

Introduction	to	Programming	in	ATS
Hongwei	Xi

ATS	Trustful	Software,	Inc.

Copyright	©	2010-201?	Hongwei	Xi

As	 a	 programming	 language,	 ATS	 is	 both	 syntax-rich	 and	 feature-rich.	 This	 book	 introduces	 the
reader	 to	 some	 core	 features	 of	 ATS,	 including	 basic	 functional	 programming,	 simple	 types,
(recursively	defined)	datatypes,	polymorphic	 types,	dependent	 types,	 linear	 types,	 theorem-proving,
programming	with	theorem-proving	(PwTP),	and	template-based	programming.	Although	the	reader
is	not	assumed	to	be	familiar	with	programming	in	general,	the	book	is	likely	to	be	rather	dense	for
someone	without	considerable	programming	experience.

All	rights	are	reserved.	Permission	is	granted	to	print	this	document	for	personal	use.

Dedication
To	Jinning,	Zoe,	and	Chloe.

Table	of	Contents
Preface
I.	Basic	Functional	Programming

1.	Preparation	for	Starting
A	Running	Program
A	Template	for	Single-File	Programs
A	Makefile	Template

2.	Elements	of	Programming
Expressions	and	Values
Names	and	Bindings
Scopes	for	Bindings
Environments	for	Evaluation
Static	Semantics
Primitive	Types
Tuples	and	Tuple	Types
Records	and	Record	Types
Conditional	Expressions
Sequence	Expressions
Comments	in	Code

3.	Functions
Functions	as	a	Simple	Form	of	Abstraction
Function	Arity
Function	Interface
Evaluation	of	Function	Calls
Recursive	Functions
Evaluation	of	Recursive	Function	Calls
Example:	Coin	Changes	for	Fun
Tail-Call	and	Tail-Recursion
Example:	The	Eight-Queens	Puzzle
Mutually	Recursive	Functions
Mutually	Defined	Tail-Recursion
Envless	Functions	and	Closure-Functions

Higher-Order	Functions
Example:	Binary	Search	for	Fun
Example:	A	Higher-Order	Fun	Puzzle
Currying	and	Uncurrying

4.	Datatypes
Patterns
Pattern-Matching
Matching	Clauses	and	Case-Expressions
Enumerative	Datatypes
Recursively	Defined	Datatypes
Exhaustiveness	of	Pattern-Matching
Example:	Binary	Search	Tree
Example:	Evaluating	Integer	Expressions

5.	Parametric	Polymorphism
Function	Templates
Polymorphic	Functions
Polymorphic	Datatypes
Example:	Function	Templates	on	Lists
Example:	Mergesort	on	Lists

II.	Support	for	Practical	Programming
6.	Effectful	Programming	Features

Exceptions
Example:	Testing	for	Braun	Trees
References
Example:	A	Counter	Implementation
Arrays
Example:	Ordering	Permutations
Matrices
Example:	Estimating	the	Constant	Pi
Simple	Input	and	Output

7.	Modularity
Types	as	a	Form	of	Specification
Static	and	Dynamic	ATS	Files
Generic	Template	Implementation
Specific	Template	Implementation
Abstract	Types

Example:	A	Package	for	Rationals
Example:	A	Functorial	Package	for	Rationals

8.	Interaction	with	C
External	Global	Names
External	Types	and	Values	in	ATS
Inclusion	of	External	Code	in	ATS
Calling	External	Functions	in	ATS
Unsafe	C-style	Programming	in	ATS
Exporting	Types	in	ATS	for	Use	in	C
Example:	Constructing	a	Statically	Allocated	List

III.	Programming	with	Dependent	Types
9.	Introduction	to	Dependent	Types

Enhanced	Expressiveness	for	Specification
Constraint-Solving	during	Typechecking
Example:	String	Processing
Example:	Binary	Search	on	Arrays
Termination-Checking	for	Recursive	Functions
Example:	Dependent	Types	for	Debugging

10.	Datatype	Refinement
Dependent	Datatypes
Example:	Function	Templates	on	Lists	(Redux)
Example:	Mergesort	on	Lists	(Redux)
Sequentiality	of	Pattern	Matching
Example:	Functional	Red-Black	Trees

11.	Theorem-Proving	in	ATS/LF
Encoding	Relations	as	Dataprops
Constructing	Proofs	as	Total	Functions
Example:	Distributivity	of	Multiplication
Example:	Commutativity	of	Multiplication
Algebraic	Datasorts
Example:	Establishing	Properties	on	Braun	Trees
Programmer-Centric	Theorem-Proving

12.	Programming	with	Theorem-Proving
Circumventing	Nonlinear	Constraints
Example:	Safe	Matrix	Subscripting
Specifying	with	Enhanced	Precision

Example:	Another	Verified	Factorial
Example:	Verified	Fast	Exponentiation

IV.	Programming	with	Views	and	Viewtypes
13.	Introduction	to	Views	and	Viewtypes

Views	for	Memory	Access	through	Pointers
Viewtypes	as	a	Combination	of	Views	and	Types
Left-Values	and	Call-by-Reference
Stack-Allocated	Variables
Heap-Allocated	Linear	Closure-Functions

14.	Dataviews	as	Linear	Dataprops
Optional	Views
Disjunctive	Views
Dataview	for	Linear	Arrays
Dataview	for	Linear	Strings
Dataview	for	Singly-Linked	Lists
Proof	Functions	for	View-Changes

15.	Dataviewtypes	as	Linear	Datatypes
Linear	Optional	Values
Linear	Lists
Example:	Merge-Sort	on	Linear	Lists
Example:	Insertion	Sort	on	Linear	Lists
Example:	Quick-Sort	on	Linear	Lists
Linear	Binary	Search	Trees
Transition	from	Datatypes	to	Dataviewtypes

16.	Abstract	Views	and	Viewtypes
Simple	Linear	Objects
Memory	Allocation	and	Deallocation
Example:	Array-Based	Circular	Buffers
Locking	and	Unlocking
Linear	Channels	for	Asynchronous	IPC

V.	Programming	with	Function	Templates
17.	From	Genericity	to	Late-Binding

Genericity	of	Template	Implementations
Example:	Generic	Operations	on	Numbers
Templates	as	a	Special	Form	of	Functors
Example:	Templates	for	Loop	Construction

Template-Based	Support	for	Late-Binding

Preface
ATS	 is	 a	 statically	 typed	 programming	 language	 that	 unifies	 implementation	 with	 formal
specification.	 Within	 ATS,	 there	 are	 two	 sublanguages:	 one	 for	 specification	 and	 the	 other	 for
implementation,	 and	 there	 is	 also	 a	 theorem-proving	 subsystem	 for	 verifying	 whether	 an
implementation	indeed	implements	according	to	its	specification.	If	I	could	associate	only	one	single
word	with	ATS,	I	would	choose	the	word	precision.	Programming	in	ATS	is	about	being	precise	and
being	able	to	effectively	enforce	precision.	This	point	will	be	demonstrated	concretely	and	repeatedly
in	this	book.

In	order	to	be	precise	in	building	software	systems,	we	need	to	specify	what	such	a	system	is	expected
to	accomplish.	In	the	current	day	and	age,	software	specification,	which	is	used	in	a	rather	loose	sense
here,	 is	often	done	 in	 forms	of	varying	degrees	of	 formalism,	 ranging	 from	verbal	discussions	 to
pencil/paper	 drawings	 to	 diagrammatic	 depictions	 in	 modeling	 languages	 such	 as	 UML	 to	 text
descriptions	 in	 formal	 specification	 languages	 such	 as	 VDM	 and	 Z.	 Often	 the	 main	 purpose	 of
software	specification	is	to	establish	some	mutual	understanding	among	a	team	of	developers.	After
the	specification	for	a	software	system	is	done,	either	formally	or	informally,	we	need	to	implement
the	specification	in	a	programming	language.	In	general,	it	is	exceedingly	difficult	to	be	reasonably
certain	 whether	 an	 implementation	 actually	 meets	 its	 specification.	 Even	 if	 the	 implementation
coheres	well	with	its	specification	initially,	it	nearly	inevitably	diverges	from	the	specification	as	the
software	 system	evolves.	The	dreadful	 consequences	of	 such	a	divergence	are	 all	 too	 familiar;	 the
specification	becomes	 less	 and	 less	 reliable	 for	 understanding	 the	behavior	 of	 the	 software	 system
while	 the	 implementation	gradually	 turns	 into	 its	own	specification;	 for	 the	developers,	 it	becomes
increasingly	difficult	and	risky	to	maintain	and	extend	the	software	system;	for	the	users,	it	requires
increased	amount	of	time	and	effort	to	learn	and	use	the	software	system.

Largely	 inspired	by	Martin-Loef's	constructive	 type	 theory,	which	was	originally	developed	for	 the
purpose	 of	 establishing	 a	 foundation	 for	 mathematics,	 I	 designed	 ATS	 in	 an	 attempt	 to	 combine
specification	and	implementation	into	a	single	programming	language.	There	are	a	static	component
(statics)	and	a	dynamic	component	(dynamics)	in	ATS.	Intuitively,	 the	statics	and	dynamics	are	each
for	handling	types	and	programs,	respectively.	In	particular,	specification	is	done	in	the	statics.	Given
a	specification,	how	can	we	then	effectively	ensure	that	an	implementation	of	the	specification	(type)
indeed	 implements	 according	 to	 the	 specification?	We	 request	 that	 the	 programmer	 who	 does	 the
implementation	also	construct	a	proof	 in	 the	 theorem-proving	subsystem	of	ATS	 to	demonstrate	 it.
This	is	a	style	of	program	verification	that	puts	the	programmer	at	the	center,	and	thus	we	refer	to	it
as	a	programmer-centric	approach	to	program	verification.

http://www.ats-lang.org

As	 a	 programming	 language,	ATS	 is	 both	 syntax-rich	 and	 feature-rich.	 It	 can	 support	 a	 variety	 of
programming	 paradigms,	 including	 functional	 programming,	 imperative	 programming,	 object-
oriented	programming,	concurrent	programming,	modular	programming,	etc.	However,	the	core	of
ATS,	which	is	based	on	a	call-by-value	functional	language,	is	surprisingly	simple,	and	this	is	where
the	 journey	 of	 programming	 in	 ATS	 starts.	 In	 this	 book,	 I	 will	 demonstrate	 primarily	 through
examples	 how	 various	 programming	 features	 in	ATS	 can	 be	 employed	 effectively	 to	 facilitate	 the
construction	 of	 high-quality	 programs.	 I	 will	 focus	 on	 programming	 practice	 instead	 of
programming	theory.	If	you	are	primarily	interested	in	the	type-theoretical	foundation	of	ATS,	then
you	have	to	find	it	elsewhere.

If	 you	can	 implement,	 then	you	are	 a	good	programmer.	 In	 order	 to	 be	 a	 better	 programmer,	 you
should	also	be	able	to	explain	what	you	implement.	If	you	can	guarantee	what	is	implemented	matches
what	is	specified,	then	you	are	surely	the	best	programmer.	Hopefully,	learning	ATS	will	put	you	on	a
wonderful	exploring	journey	to	become	the	best	programmer.	Let	that	journey	start	now!

I.	Basic	Functional	Programming
Table	of	Contents
1.	Preparation	for	Starting
2.	Elements	of	Programming
3.	Functions
4.	Datatypes
5.	Parametric	Polymorphism

Chapter	1.	Preparation	for	Starting
It	is	likely	that	you	want	to	write	programs	in	the	programming	language	you	are	learning.	You	may
also	want	to	try	some	of	the	examples	included	in	this	book	and	see	what	really	happens.	So	I	will	first
show	you	how	to	write	in	ATS	a	single-file	program,	that	is,	a	program	contained	in	a	single	file,	and
compile	it	and	then	execute	it.

A	Running	Program

The	 following	 example	 is	 a	 program	 in	 ATS	 that	 prints	 out	 (onto	 the	 console)	 the	 string	 "Hello,
world!"	plus	a	newline	before	it	terminates:

val	_	=	print	("Hello,	world!\n")

implement	main0	()	=	()	//	a	dummy	for	[main]

The	keyword	 val 	initiates	a	binding	between	the	variable	 _ 	(underscore)	and	the	function	call	 print
("Hello,	world!\n") .	However,	this	binding	is	never	used	after	it	is	introduced;	its	sole	purpose	is	for
the	call	to	the	 print 	function	to	get	evaluated.

The	 function	 main0 	 is	 a	 slight	 variant	 of	 another	 function	 named	 main ,	which	 is	 of	 certain	 special
meaning	in	ATS.	For	a	programmer	who	knows	the	C	or	Java	programming	language,	I	simply	point
out	that	the	role	of	 main 	is	essentially	the	same	as	its	counterpart	of	the	same	name	in	C	or	Java.	The
keyword	 implement 	 initiates	 the	 implementation	 of	 a	 function	 whose	 interface	 has	 already	 been
declared	elsewhere.	Following	is	the	declared	interface	for	 main0 	in	ATS:

fun	main0	():	void

which	indicates	that	 main0 	is	a	nullary	function,	that	is,	a	function	taking	no	arguments,	and	it	returns
no	 value	 (or	 it	 returns	 the	 void	 value).	 The	 double	 slash	 symbol	 (//)	 initiates	 a	 comment	 that
terminates	at	the	end	of	the	current	line.

Suppose	 that	you	have	already	 installed	 the	ATS	programming	 language	 system.	You	can	 issue	 the
following	command-line	to	generate	an	executable	named	hello	in	the	current	working	directory:

atscc	-o	hello	hello.dats

where	hello.dats	refers	to	a	file	containing	the	above	program.	The	command	atscc	is	essentially	a

convenience	wrapper	around	 the	command	atsopt,	which	 triggers	 the	process	of	 typechecking	and
compiling	ATS	programs.	Note	 that	atscc	and	atsopt	may	actually	be	given	 the	names	patscc	 and
patsopt,	 respectively,	 in	 certain	 installations	 of	 ATS.	 The	 filename	 extension	 .dats	 should	 not	 be
altered	 as	 it	 has	 already	 been	 assigned	 a	 special	 meaning	 that	 the	 compilation	 command	 atscc
recognizes.	Another	special	filename	extension	is	.sats,	which	we	will	soon	encounter.

A	Template	for	Single-File	Programs

The	 following	code	 template,	which	 is	 available	on-line,	 is	 designed	 for	 constructing	 a	 single-file
program	in	ATS:

(*

**

**	A	template	for	single-file	ATS	programs

**

*)

(*	******	******	*)

//

#include	"share/atspre_define.hats"

#include	"share/atspre_staload.hats"

//

(*	******	******	*)

//

//	please	write	you	program	in	this	section

//

(*	******	******	*)

implement	main0	()	=	()	//	a	dummy	implementation	for	[main]

The	line	starting	with	the	keyword	 #include 	enables	the	ATS	compiler	atsopt	to	gain	access	to	certain
external	 library	packages	and	 the	definitions	of	various	 library	functions.	 I	will	cover	elsewhere	 in
the	book	the	topic	on	making	use	of	library	code	in	ATS.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_START/mytest.dats

A	Makefile	Template

The	following	Makefile	template,	which	is	available	on-line,	is	provided	to	help	you	construct	your
own	Makefile	for	compiling	ATS	programs.	If	you	are	not	familiar	with	the	make	utility,	you	could
readily	find	plenty	resources	on-line	to	help	yourself	learn	it.

######

#

#	Note	that

#	certain	installations	require	the	following	changes:

#

#	atscc	->	patscc

#	atsopt	->	patsopt

#	ATSHOME	->	PATSHOME

#

######

ATSHOMEQ="$(ATSHOME)"

######

ATSCC=$(ATSHOMEQ)/bin/atscc

ATSOPT=$(ATSHOMEQ)/bin/atsopt

######

#

#	HX:	Please	uncomment	the	one	you	want,	or	skip	it	entirely

#

ATSCCFLAGS=

#ATSCCFLAGS=-O2

#

#	'-flto'	enables	link-time	optimization	such	as	inlining	lib	functions

#

#ATSCCFLAGS=-O2	-flto

#

######

cleanall::

######

#

#	Please	uncomment	the	following	three	lines	and	replace	the	name	[foo]

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_START/Makefile_template

#	with	the	name	of	the	file	you	want	to	compile

#

#	foo:	foo.dats	;	\

#			$(ATSCC)	$(ATSCCFLAGS)	-o	$@	$<	||	echo	$@	":	ERROR!!!"

#	cleanall::	;	$(RMF)	foo

######

#

#	You	may	find	these	rules	useful

#

#	%_sats.o:	%.sats	;	$(ATSCC)	$(ATSCCFLAGS)	-c	$<	||	echo	$@	":	ERROR!!!"

#	%_dats.o:	%.dats	;	$(ATSCC)	$(ATSCCFLAGS)	-c	$<	||	echo	$@	":	ERROR!!!"

######

RMF=rm	-f

######

clean::	;	$(RMF)	*~

clean::	;	$(RMF)	*_?ats.o

clean::	;	$(RMF)	*_?ats.c

cleanall::	clean

######	end	of	[Makefile]	######

Chapter	2.	Elements	of	Programming
The	core	of	ATS	is	a	call-by-value	functional	programming	language.	I	will	explain	the	meaning	of
call-by-value	in	a	moment.	As	for	functional	programming,	there	is	really	no	precise	definition.	The
most	 important	 aspect	 of	 functional	 programming	 that	 I	want	 to	 explore	 is	 the	 notion	 of	 binding,
which	relates	names	to	expressions.

Expressions	and	Values

ATS	 is	 both	 syntax-rich	 and	 feature-rich,	 and	 its	 grammar	 is	 probably	 more	 complex	 than	 most
existing	programming	languages.	In	ATS,	there	are	a	large	variety	of	forms	of	expressions,	which	I
will	introduce	gradually.

Let	us	first	start	with	some	integer	arithmetic	expressions	(IAEs):	 1 ,	 ~2 ,	 1+2 ,	 1+2*3-4 ,	 (1+2)/(3-4) ,
etc.	Note	that	the	negative	sign	is	represented	by	the	tilde	symbol	(~)	in	ATS.	There	is	also	support
for	floating	point	numbers,	and	some	floating	point	constants	are	given	here:	 1.0 ,	 ~2.0 ,	 3. ,	 0.12345 ,
2.71828 ,	 31416E-4 ,	etc.	Note	that	 3. 	and	 31416E-4 	are	the	same	as	 3.0 	and	 3.1416 ,	respectively.	What	I
really	want	to	emphasize	at	this	point	is	that	 1 	and	 1.0 	are	two	distinct	numbers	in	ATS:	the	former	is
an	integer	while	the	latter	is	a	floating	point	number	(of	double	precision).

There	are	also	boolean	constants:	 true 	and	 false .	We	can	form	boolean	expressions	such	as	 1	>=	0 ,
not(2-1	>=	2) ,	 (1	<	2)	andalso	(2	<	3) 	and	 (~1	>	1)	orelse	(~1	<=	1) ,	where	 not ,	 andalso 	and	 orelse
stand	for	negation,	conjunction	and	disjunction,	respectively.	For	programmers	familiar	with	C-like
syntax,	I	point	out	that	operators	 && 	and	 || 	are	synonyms	for	 andalso 	and	 orelse ,	respectively.

Other	 commonly	 used	 constant	 values	 include	 characters	 and	 strings.	 For	 instance,	 following	 are
some	character	 constants:	 'a' ,	 'B' ,	 '\n' 	 (newline),	 '\t' 	 (tab),	 '\(' 	 (left	 parenthesis),	 ')' 	 (right
parenthesis),	 '\{' 	(left	curly	brace),	 '}' 	(right	curly	brace),	etc;	following	are	some	string	constants:
"My	name	is	Zoe" ,	 "Don't	call	me	\"Chloe\"" ,	 "this	is	a	newline:\n" ,	etc.

Given	 a	 (function)	 name,	 say,	 foo,	 and	 an	 expression	 exp,	 the	 expression	 foo(exp)	 is	 a	 function
application	or	function	call.	The	parentheses	in	foo(exp)	may	be	dropped	if	no	ambiguity	is	created
by	doing	so.	For	instance,	 print("Hello") 	is	a	function	application,	which	can	also	be	written	as	 print
"Hello" .	If	foo	is	a	nullary	function,	then	a	function	application	foo()	can	be	formed.	If	foo	is	a	binary
function,	then	a	function	application	foo(exp1,	exp2)	can	be	formed	for	expressions	exp1	and	exp2.
Functions	of	more	arguments	can	be	treated	accordingly.

Note	that	we	cannot	write	 +(1,2) 	as	the	name	 + 	has	already	been	given	the	infix	status	requiring	that
it	be	treated	as	an	infix	operator.	However,	we	can	write	 op+(1,2) ,	where	 op 	is	a	keyword	in	ATS	that
can	 be	 used	 to	 temporarily	 suspend	 the	 infix	 status	 of	 any	 name	 immediately	 following	 it.	 I	 will
explain	in	detail	the	issue	of	fixity	(prefix,	infix	and	postfix)	elsewhere.

Values	 are	 essentially	 expressions	of	 certain	 special	 forms,	which	 cannot	 be	 reduced	or	 simplified
further.	For	instance,	integer	constants	such	as	 1 	and	 ~2 	are	values,	but	the	integer	expression	 1+2 	is

not	a	value,	which	can	be	reduced	to	the	value	 3 .	Evaluation	refers	to	the	computational	process	that
reduces	a	given	expression	into	a	value.	However,	certain	expressions	such	as	 1/0 	cannot	be	reduced
to	a	value,	and	evaluating	such	an	expression	must	abort	at	some	point.	I	will	gradually	present	more
information	on	evaluation.

Names	and	Bindings

A	crucial	aspect	of	a	programming	language	is	the	mechanism	it	provides	for	binding	names,	which
are	themselves	expressions,	to	expressions.	For	instance,	a	declaration	is	introduced	by	the	following
syntax	 that	declares	a	binding	between	 the	name	 x ,	which	 is	also	 referred	 to	as	a	variable,	 and	 the
expression	 1+2 :

val	x	=	1	+	2

Note	that	 val 	is	a	keyword	in	ATS,	and	the	declaration	is	classified	as	a	val-declaration.	Conceptually,
what	happens	at	run-time	in	a	call-by-value	language	such	as	ATS	is	that	the	expression	 1+2 	 is	 first
evaluated	to	the	value	 3 ,	and	then	the	binding	between	 x 	and	 1+2 	is	finalized	into	a	binding	between
x 	and	 3 .	Essentially,	call-by-value	means	that	a	binding	between	a	name	and	an	expression	needs	to
be	 finalized	 into	 one	 between	 the	 name	 and	 the	 value	 of	 the	 expression	 before	 it	 can	 be	 used	 in
evaluation	 subsequently.	As	 another	 example,	 the	 following	 syntax	 declares	 three	 bindings,	 two	 of
which	are	formed	simultaneously	in	the	first	line:

val	PI	=	3.14	and	radius	=	10.0

val	area	=	PI	*	radius	*	radius

Note	 that	 it	 is	 unspecified	 in	ATS	as	 to	which	of	 the	 first	 two	bindings	 (connected	by	 the	keyword
and)	 is	 finalized	 ahead	of	 the	other	 at	 run-time.	However,	 it	 is	 guaranteed	 that	 the	 third	binding	 is
finalized	after	the	first	two	are	done.	To	see	this	issue	from	a	different	angle,	we	can	try	to	typecheck
the	following	code:

val	x	=	0	and	y	=	x	+	1

The	 error	 message	 reported	 in	 this	 case	 indicates	 that	 the	 name	 (or	 dynamic	 identifier)	 x 	 in	 the
expression	 x	+	1 	is	unbound.	In	particular,	the	two	occurrences	of	 x 	in	the	above	code	are	unrelated.

Scopes	for	Bindings

Each	binding	is	given	a	fixed	scope	in	which	the	binding	is	considered	legal	or	effective.	The	scope
of	a	toplevel	binding	in	a	file	starts	from	the	point	where	the	binding	is	introduced	until	the	very	end
of	the	file.	The	bindings	introduced	in	the	following	example	between	the	keywords	 let 	and	 in 	are
effective	until	the	keyword	 end 	is	reached:

val	area	=	let

		val	PI	=	3.14	and	radius	=	10.0	in	PI	*	radius	*	radius

end	//	end	of	[let]

Such	bindings	are	referred	to	as	local	bindings,	and	the	names	such	as	 PI 	and	 radius 	are	referred	to
as	local	names.	This	example	can	also	be	written	in	the	following	style:

val	area	=

		PI	*	radius	*	radius	where	{

		val	PI	=	3.14	and	radius	=	10.0	//	simultaneous	bindings

}	//	end	of	[where]	//	end	of	[val]

The	keyword	 where 	 appearing	 immediately	 after	 an	 expression	 introduces	 bindings	 that	 are	 solely
effective	 for	evaluating	names	contained	 in	 the	expression.	Note	 that	 expressions	 formed	using	 the
keywords	 let 	and	 where 	are	often	referred	to	as	let-expressions	and	where-expressions,	respectively.
The	 former	can	always	be	 translated	 into	 the	 latter	directly	and	vice	versa.	Which	 style	 is	 better?	 I
have	 not	 formed	 my	 opinion	 yet.	 The	 answer	 seems	 to	 entirely	 depend	 on	 the	 taste	 of	 the
programmer.

The	following	example	demonstrates	an	alternative	approach	to	introducing	local	bindings:

local

val	PI	=	3.14	and	radius	=	10.0

in	(*	in	of	[local]	*)

val	area	=	PI	*	radius	*	radius

end	//	end	of	[local]

where	 the	bindings	 introduced	between	 the	keywords	 local 	and	 in 	 are	 effective	until	 the	keyword
end 	 is	reached.	Note	that	the	bindings	introduced	between	the	keywords	 in 	and	 end 	are	 themselves
toplevel	bindings.	The	difference	between	 let 	and	 local 	should	be	clear:	The	former	is	used	to	form

an	expression	while	the	latter	is	used	to	introduce	a	sequence	of	declarations.

Environments	for	Evaluation

Evaluation	 is	 the	 computational	 process	 that	 reduces	 expressions	 to	 values.	 When	 performing
evaluation,	we	need	not	only	the	expression	to	be	evaluated	but	also	a	collection	of	bindings	that	map
names	in	the	expression	to	values.	This	collection	of	bindings,	which	is	just	a	finite	mapping,	is	often
referred	 to	 as	 an	 environment	 (for	 evaluation).	 For	 instance,	 suppose	 that	we	want	 to	 evaluate	 the
following	expression:

let

		val	PI	=	3.14	and	radius2	=	10.0	*	10.0	in	PI	*	radius2

end

We	start	with	the	empty	environment	ENV0;	we	evaluate	 3.14 	to	itself	and	 10.0	*	10.0 	to	 100.0 	under
the	environment	ENV0;	we	then	extend	ENV0	to	ENV1	with	two	bindings	mapping	 PI 	 to	 3.14 	and
radius2 	to	 100.0 ;	we	then	evaluate	 PI	*	radius2 	under	ENV1	to	 3.14	*	radius2 ,	then	to	 3.14	*	100.0 ,
and	finally	to	 314.0 ,	which	is	the	value	of	the	let-expression.

Static	Semantics

ATS	is	a	programming	language	equipped	with	a	highly	expressive	type	system	rooted	in	the	Applied
Type	System	framework,	which	also	gives	ATS	its	name.	I	will	gradually	introduce	the	type	system	of
ATS,	which	is	probably	the	most	outstanding	and	interesting	part	of	this	book.

It	is	common	to	treat	a	type	as	the	set	of	values	it	classifies.	However,	I	find	it	more	approriate	to	treat
a	 type	as	a	 form	of	meaning.	There	are	 formal	 rules	 for	assigning	 types	 to	expressions,	which	are
referred	to	as	typing	rules.	If	a	type	T	can	be	assigned	to	an	expression,	then	I	say	that	the	expression
possesses	 the	static	meaning	 (semantics)	 represented	by	 the	 type	T.	Note	 that	an	expression	may	be
assigned	many	distinct	static	meanings.	An	expression	is	well-typed	if	there	exists	a	type	T	such	that
the	expression	can	be	assigned	the	type	T.

If	there	is	a	binding	between	a	name	and	an	expression	and	the	expression	is	of	some	type	T,	then	the
name	is	assumed	to	be	of	the	type	T	in	the	effective	scope	of	the	binding.	In	other	words,	the	name
assumes	the	static	meaning	of	the	expression	it	refers	to.

Let	exp0	be	an	expression	of	some	 type	T,	 that	 is,	 the	 type	T	can	be	assigned	 to	exp0	according	 to
certain	 typing	 rules.	 If	we	can	evaluate	exp0	 to	exp1,	 then	exp1	can	also	be	assigned	 the	 type	T.	 In
other	words,	static	meaning	is	an	invariant	under	evaluation.	This	property	is	often	referred	to	as	type
preservation,	which	is	part	of	the	soundness	of	the	type	system	of	ATS.	Based	on	this	property,	we	can
readily	infer	that	any	value	is	of	the	type	T	if	exp0	can	be	evaluated	to	it	(in	multiple	steps).

Let	exp0	be	an	expression	of	some	type	T.	Assume	that	exp0	is	not	a	value.	Then	exp0	can	always	be
evaluated	one	step	further	to	another	expression	exp1.	This	property	is	often	referred	to	as	progress,
which	is	another	part	of	the	soundness	of	the	type	system	of	ATS.

Primitive	Types

The	 simplest	 types	 in	 ATS	 are	 primitive	 types,	 which	 are	 used	 to	 classify	 primitive	 values.	 For
instance,	we	have	the	primitive	types	 int 	and	 double ,	which	classify	integers	(in	a	fixed	range)	and
floating	point	numbers	(of	double	precision),	respectively.

In	 the	current	 implementation	of	ATS	 (Postiats),	 a	program	 in	ATS	 is	 first	 compiled	 into	one	 in	C
(conforming	 to	 the	C99	standard),	which	can	 then	be	compiled	 to	object	code	by	a	compiler	 for	C
such	as	gcc.	 In	 the	compilation	from	ATS	to	C,	 the	 type	 int 	 in	ATS	is	 translated	 to	 the	 type	of	 the
same	name	in	C.	Similarly,	the	type	 double 	in	ATS	is	translated	to	the	type	of	the	same	name	in	C.

There	are	many	other	primitive	types	in	ATS,	and	I	will	introduce	them	gradually.	Some	commonly
used	primitive	types	are	listed	as	follows:

bool :	This	type	is	for	boolean	values	 true 	and	 false ,	and	it	is	translated	into	the	int	type	in	C.

char :	This	type	is	translated	into	the	type	in	C	for	characters.

schar :	This	type	is	translated	into	the	type	in	C	for	signed	characters.

uchar :	This	type	is	translated	into	the	type	in	C	for	unsigned	characters.

float :	This	type	is	translated	into	the	type	in	C	for	floating	point	numbers	of	single	precision.

uint :	This	type	is	translated	into	the	type	in	C	for	unsigned	integers.

lint :	This	type	is	translated	into	the	type	in	C	for	long	integers.

ulint :	This	type	is	translated	into	the	type	in	C	for	unsigned	long	integers.

llint :	This	type	is	translated	into	the	type	in	C	for	long	long	integers.

ullint :	This	type	is	translated	into	the	type	in	C	for	unsigned	long	long	integers.

size_t :	This	type	is	translated	into	the	type	in	C	of	the	same	name,	which	is	for	unsigned	integers
of	certain	precision.	Usually,	the	type	 size_t 	can	be	treated	as	the	type	 ulint 	and	vice	versa.

ssize_t :	This	type	is	translated	into	the	type	in	C	of	the	same	name,	which	is	for	signed	integers
of	certain	precision.	Usually,	the	type	 ssize_t 	can	be	treated	as	the	type	 lint 	and	vice	versa.

string :	This	type	is	for	strings,	and	its	translation	in	C	is	the	type	for	pointers.	I	will	explain	this
translation	elsewhere.

void :	This	 type	 is	 for	 the	 void	 value,	 and	 its	 translation	 in	C	 is	 the	 type	 of	 the	 same	name.	 It
should	be	noted	that	the	void	value	is	unspecified	in	ATS.	I	often	say	that	a	function	returns	no
value	if	it	returns	the	void	value,	and	vice	versa.

I	will	gradually	present	programming	examples	involving	various	primitive	types	and	values.

Tuples	and	Tuple	Types

Given	two	types	T1	and	T2,	we	can	form	a	tuple	type	(T1,	T2),	which	can	also	be	written	as	@(T1,
T2).	Assume	that	exp1	and	exp2	are	 two	expressions	of	 the	 types	T1	and	T2,	respectively.	Then	the
expression	(exp1,	exp2),	which	can	also	be	written	as	@(exp1,	exp2),	refers	to	a	tuple	of	the	tuple	type
(T1,	T2).	Accordingly,	we	can	form	tuples	and	tuple	types	of	more	components.	In	order	for	a	tuple
type	to	be	assigned	to	a	tuple,	the	tuple	and	the	tuple	type	must	have	the	equal	number	of	components.

When	evaluating	a	tuple	expression,	we	evaluate	all	of	its	components	sequentially.	Suppose	that	the
expression	contains	n	 components,	 then	 the	value	of	 the	 expression	 is	 the	 tuple	 consisting	of	 the	n
values	of	the	n	components	listed	in	the	order	as	the	components	themselves.

A	 tuple	of	 length	n	 for	 n	>=	2	 is	 just	 a	 record	of	 field	names	 ranging	 from	0	until	 n-1,	 inclusive.
Given	an	expression	exp	of	some	tuple	type	(T1,	T2),	we	can	form	expressions	(exp).0	and	(exp).1,
which	are	of	types	T1	and	T2,	respectively.	Note	that	the	expression	exp	does	not	have	to	be	a	tuple
expression.	For	instance,	exp	may	be	a	name	or	a	function	application.	If	exp	evaluates	to	a	tuple	of
two	values,	then	exp.0	evaluates	to	the	first	value	and	exp.1	the	second	value.	Clearly,	if	the	tuple	type
of	exp	contains	more	components,	what	is	stated	can	be	generalized	accordingly.

In	the	following	example,	we	first	construct	a	tuple	of	length	3	and	then	introduce	bindings	between	3
names	and	all	of	the	3	components	of	the	tuple:

val	xyz	=	('A',	1,	2.0)

val	x	=	xyz.0	and	y	=	xyz.1	and	z	=	xyz.2

Note	that	the	constructed	tuple	can	be	assigned	the	tuple	type	 (char,	int,	double) .	Another	method	for
selecting	 components	 in	 a	 given	 tuple	 is	 based	 on	 pattern	 matching,	 which	 is	 employed	 in	 the
following	example:

val	xyz	=	('A',	1,	2.0)

val	(x,	y,	z)	=	xyz	//	x	=	'A';	y	=	1;	z	=	2.0

Note	that	 (x,	y,	z) 	is	a	pattern	that	can	match	any	tuples	of	exact	3	components.	I	will	say	more	about
pattern	matching	elsewhere.

The	tuples	introduced	above	are	often	referred	to	as	flat	tuples,	native	tuples	or	unboxed	tuples.	There
is	another	kind	of	tuples	supported	in	ATS,	which	are	called	boxed	tuples.	A	boxed	tuple	is	essentially
a	pointer	pointing	to	some	heap	location	where	a	flat	tuple	is	stored.

Assume	 that	 exp1	 and	 exp2	 are	 two	 expressions	 of	 the	 types	 T1	 and	 T2,	 respectively.	 Then	 the
expression	'(exp1,	exp2),	refers	to	a	tuple	of	the	tuple	type	'(T1,	T2).	Accordingly,	we	can	form	boxed
tuples	and	boxed	tuple	types	of	fewer	or	more	components.	What	should	be	noted	immediately	is	that
every	boxed	tuple	is	of	the	size	of	a	pointer,	and	can	thus	be	stored	in	any	place	where	a	pointer	can.
Using	 boxed	 tuples	 is	 rather	 similar	 to	 using	 unboxed	 ones.	 For	 instance,	 the	 meaning	 of	 the
following	code	should	be	evident:

val	xyz	=	'('A',	1,	2.0)

val	x	=	xyz.0	and	y	=	xyz.1	and	z	=	xyz.2

Note	that	a	space	is	needed	between	 '(and	 'A' 	for	otherwise	the	current	parser	(for	ATS/Postiats)
would	be	confused.

Given	the	availability	of	flat	and	boxed	tuples,	one	naturally	wants	to	know	whether	there	is	a	simple
way	to	determine	which	kind	is	preferred	over	the	other.	Unfortunately,	there	is	no	simple	way	to	do
this	as	far	as	I	can	tell.	In	order	to	be	certain,	some	kind	of	profiling	is	often	needed.	However,	if	we
want	to	run	code	with	no	support	of	garbage	collection	(GC),	then	we	should	definitely	avoid	using
boxed	tuples.

Records	and	Record	Types

A	record	is	just	like	a	tuple	except	that	each	field	name	of	the	record	is	chosen	by	the	programmer
(instead	of	being	fixed).	Similarly,	a	record	type	is	just	like	a	tuple	type.	For	instance,	a	record	type
point2D 	is	defined	as	follows:

typedef	point2D	=	@{	x=	double,	y=	double	}

where	 x 	and	 y 	are	the	names	of	the	two	fields	in	a	record	value	of	this	type.	We	also	refer	to	a	field
in	 a	 record	 as	 a	 component.	 The	 special	 symbol	 @{ 	 indicates	 that	 the	 formed	 type	 is	 for
flat/native/unboxed	records.	A	value	of	the	type	 point2D 	is	constructed	as	follows	and	given	the	name
theOrigin :

val	theOrigin	=	@{	x=	0.0,	y=	0.0	}	:	point2D

We	can	use	the	standard	dot	notation	to	extract	out	a	selected	component	in	a	record,	and	this	is	shown
in	the	next	line	of	code:

val	theOrigin_x	=	theOrigin.x	and	theOrigin_y	=	theOrigin.y

Alternatively,	we	can	use	pattern	matching	for	doing	component	extraction	as	is	done	in	the	next	line
of	code:

val	@{	x=	theOrigin_x,	y=	theOrigin_y	}	=	theOrigin

In	this	case,	the	names	 theOrigin_x 	and	 theOrigin_y 	are	bound	to	the	components	in	 theOrgin 	that	are
named	 x 	and	 y ,	respectively.	If	we	only	need	to	extract	out	a	selected	few	of	components	(instead	of
all	the	available	ones),	we	can	make	use	of	the	following	kind	of	patterns:

val	@{	x=	theOrigin_x,	...	}	=	theOrigin	//	the	x-component	only	

val	@{	y=	theOrigin_y,	...	}	=	theOrigin	//	the	y-component	only	

If	you	find	all	this	syntax	for	component	extraction	to	be	confusing,	then	I	suggest	that	you	stick	to	the
dot	notation.	I	myself	rarely	use	pattern	matching	on	record	values.

Compared	 with	 handling	 native/flat/unboxed	 records,	 the	 only	 change	 needed	 for	 handling	 boxed
records	 is	 to	 replace	 the	 special	 symbol	 @{ 	 with	 another	 one:	 '{ ,	 which	 is	 a	 quote	 followed
immediately	by	a	left	curly	brace.

Conditional	Expressions

A	conditional	expression	consists	of	a	test	and	two	branches.	For	instance,	the	following	expression	is
conditional:

if	(x	>=	0)	then	x	else	~x

where	 if ,	 then 	and	 else 	are	keywords	in	ATS.	In	a	conditional	expression,	the	expression	following
if 	is	the	test	and	the	expressions	following	 then 	and	 else 	are	referred	to	as	the	then-branch	and	the
else-branch	(of	the	conditional	expression),	respectively.

In	order	to	assign	a	type	T	to	a	conditional	expression,	we	need	to	assign	the	type	 bool 	to	the	test	and
the	type	T	to	both	of	the	then-branch	and	the	else-branch.	For	instance,	the	type	 int 	can	be	assigned	to
the	above	conditional	expression	if	the	name	 x 	is	given	the	type	 int .

Suppose	that	we	have	a	conditional	expression	that	is	well-typed.	When	evaluating	it,	we	first	evaluate
the	 test	 to	 a	 value,	 which	 is	 guaranteed	 to	 be	 either	 true 	 or	 false ;	 if	 the	 value	 is	 true ,	 then	 we
continue	to	evaluate	the	then-branch;	otherwise,	we	continue	to	evaluate	the	else-branch.

It	is	also	allowed	to	form	a	conditional	expression	where	the	else-branch	is	missing	or	truncated.	For
instance,	we	can	form	an	expression	as	follows:

if	(x	>=	0)	then	print(x)

which	is	equivalent	to	the	following	conditional	expression:

if	(x	>=	0)	then	print(x)	else	()

Note	that	 () 	stands	for	 the	void	value	(of	 the	 type	 void).	 If	a	 type	can	be	assigned	to	a	conditional
expression	in	the	truncated	form,	then	the	type	must	be	 void .

Sequence	Expressions

Assume	that	exp1	and	exp2	are	expressions	of	types	T1	and	T2	respectively,	where	T1	is	 void .	Then	a
sequence	expression	(exp1;	exp2)	can	be	formed	that	is	of	the	type	T2.	When	evaluating	the	sequence
expression	 (exp1;	 exp2),	 we	 first	 evaluate	 exp1	 to	 the	 void	 value	 and	 then	 evaluate	 exp2	 to	 some
value,	which	is	also	the	value	of	the	sequence	expression.	When	more	expressions	are	sequenced,	all
of	them	but	the	last	one	need	to	be	of	the	type	 void 	and	the	type	of	the	last	expression	is	also	the	type
of	the	sequence	expression	being	formed.	Evaluating	a	sequence	of	more	expressions	is	analogous	to
evaluating	a	sequence	of	two.	The	following	example	is	a	sequence	expression:

(print	'H';	print	'e';	print	'l';	print	'l';	print	'o')

Evaluating	this	sequence	expression	prints	out	(onto	the	console)	the	5-letter	string	"Hello".	Instead	of
parentheses,	we	can	also	use	the	keywords	 begin 	and	 end 	to	form	a	sequence	expression:

begin

		print	'H';	print	'e';	print	'l';	print	'l';	print	'o'

end	//	end	of	[begin]

If	we	like,	we	may	also	add	a	semicolon	immediately	after	the	last	expression	in	a	sequence	as	long	as
the	last	expression	is	of	the	type	 void .	For	instance,	the	above	example	can	also	be	written	as	follows:

begin

		print	'H';	print	'e';	print	'l';	print	'l';	print	'o';

end	//	end	of	[begin]

I	also	want	to	point	out	the	following	style	of	sequencing:

let

		val	()	=	print	'H'

		val	()	=	print	'e'

		val	()	=	print	'l'

		val	()	=	print	'l'

		val	()	=	print	'o'

in

		//	nothing

end	//	end	of	[let]

which	is	quite	common	in	functional	programming.

Comments	in	Code

ATS	currently	supports	four	forms	of	comments:	line	comment,	block	comment	of	ML-style,	block
comment	of	C-style,	and	rest-of-file	comment.

A	line	comment	starts	with	the	double	slash	symbol	(//)	and	extends	until	the	end	of	the	current
line.

A	block	comment	of	ML-style	starts	and	closes	with	the	tokens	 (* 	and	 *) ,	respectively.	Note	that
nested	 block	 comments	 of	ML-style	 are	 allowed,	 that	 is,	 one	 block	 comment	 of	ML-style	 can
occur	within	another	one	of	the	same	style.

A	block	comment	of	C-style	starts	and	closes	with	the	tokens	 /* 	and	 */ ,	respectively.	Note	that
block	comments	of	C-style	cannot	be	nested.	The	use	of	block	comments	of	C-style	is	primarily
in	code	that	is	supposed	to	be	shared	by	ATS	and	C.	In	other	cases,	block	comments	of	ML-style
should	be	the	preferred	choice.

A	rest-of-file	comment	starts	with	the	quadruple	slash	symbol	(////)	and	extends	until	the	end	of
the	file.	Comments	of	this	style	of	are	primarily	useful	for	developing	or	debugging	programs.

Chapter	3.	Functions
Functions	 play	 a	 foundational	 role	 in	 programming.	 While	 it	 may	 be	 theoretically	 possible	 to
program	without	functions	(but	with	loops),	such	a	programming	style	is	of	little	practical	value.	ATS
does	 provide	 some	 language	 constructs	 for	 implementing	 for-loops	 and	 while-loops	 directly.	 I,
however,	strongly	recommend	that	the	programmer	implement	loops	as	recursive	functions	or	more
precisely,	 as	 tail-recursive	 functions.	 This	 is	 a	 programming	 style	 that	 matches	 well	 with	 more
advanced	programming	features	in	ATS,	which	will	be	presented	in	this	book	later.

The	code	employed	for	illustration	in	this	chapter	plus	some	additional	code	for	testing	is	available
on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_FUNCTION/

Functions	as	a	Simple	Form	of	Abstraction

Given	an	expression	exp	of	the	type	 double ,	we	can	multiply	exp	by	itself	to	compute	its	square.	If	exp
is	 a	 complex	 expression,	we	may	 introduce	 a	 binding	between	 a	 name	 and	 exp	 so	 that	 exp	 is	 only
evaluated	once.	This	idea	is	shown	in	the	following	example:

let	val	x	=	3.14	*	(10.0	-	1.0	/	1.4142)	in	x	*	x	end

Now	suppose	that	we	have	found	a	more	efficient	way	to	do	squaring.	In	order	to	take	full	advantage
of	it,	we	need	to	modify	each	occurrence	of	squaring	in	the	current	program	accordingly.	This	style
of	programming	is	clearly	not	modular,	and	it	is	of	little	chance	to	scale.	To	address	this	problem,	we
can	implement	a	function	as	follows	to	compute	the	square	of	a	given	floating	point	number:

fn	square	(x:	double):	double	=	x	*	x

The	keyword	 fn 	initiates	the	definition	of	a	non-recursive	function,	and	the	name	following	it	is	for
the	function	to	be	defined.	In	the	above	example,	the	function	 square 	takes	one	argument	of	the	name
x ,	which	is	assumed	to	have	the	type	 double ,	and	returns	a	value	of	the	type	 double .	The	expression
on	the	right-hand	side	(RHS)	of	the	symbol	 = 	is	the	body	of	the	function,	which	is	 x	*	x 	in	this	case.
If	we	have	a	more	efficient	way	 to	do	squaring,	we	can	 just	 re-implement	 the	body	of	 the	 function
square 	 accordingly	 to	 take	 advantage	 of	 it,	 and	 there	 is	 no	 other	 changes	 needed	 (assuming	 that
squaring	is	solely	done	by	calling	 square).

If	 square 	is	a	name,	what	is	the	expression	it	refers	to?	It	turns	out	that	the	above	function	definition
can	also	be	written	as	follows:

val	square	=	lam	(x:	double):	double	=>	x	*	x

where	 the	RHS	 of	 the	 symbol	 = 	 is	 a	 lambda-expression	 representing	 an	 anonymous	 function	 that
takes	 one	 argument	 of	 the	 type	 double 	 and	 returns	 a	 value	 of	 the	 type	 double ,	 and	 the	 expression
following	 the	 symbol	 => 	 is	 the	 body	 of	 the	 function.	 If	 we	wish,	 we	 can	 change	 the	 name	 of	 the
function	argument	as	follows:

val	square	=	lam	(y:	double):	double	=>	y	*	y

This	is	called	alpha-renaming	(of	function	arguments),	and	the	new	lambda-expression	is	said	to	be
alpha-equivalent	to	the	original	one.

A	 lambda-expression	 is	 a	 (function)	 value.	 Suppose	 we	 have	 a	 lambda-expression	 representing	 a
binary	function,	 that	 is,	a	function	taking	two	arguments.	In	order	to	assign	a	type	of	 the	form	(T1,
T2)	->	T	to	the	lambda-expression,	we	need	to	verify	that	the	body	of	the	function	can	be	given	the
type	T	if	the	two	arguments	of	the	function	are	assumed	to	have	the	types	T1	and	T2.	What	is	stated
also	 applies,	 mutatis	 mutandis,	 to	 lambda-expressions	 representing	 functions	 of	 fewer	 or	 more
arguments.	For	instance,	the	lambda-expression	 lam	(x:	double):	double	=>	x	*	x 	can	be	assigned	the
function	type	 (double)	->	double ,	which	may	also	be	written	as	 double	->	double .

Assume	that	exp	is	an	expression	of	some	function	type	(T1,	T2)	->	T.	Note	that	exp	is	not	necessarily
a	name	or	a	 lambda-expression.	If	expressions	exp1	and	exp2	can	be	assigned	 the	 types	T1	and	T2,
then	the	function	application	exp(exp1,	exp2),	which	may	also	be	referred	to	as	a	function	call,	can	be
assigned	the	type	T.	Typing	a	function	application	of	fewer	or	more	arguments	is	handled	similarly.

Let	us	now	see	an	example	that	builds	on	the	previously	defined	function	 square .	The	boundary	of	a
ring	consists	of	two	circles	centered	at	the	same	point.	If	the	radii	of	the	outer	and	inner	circles	are	R
and	r,	respectively,	then	the	area	of	the	ring	can	be	computed	by	the	following	function	 area_of_ring :

fn	area_of_ring

		(R:	double,	r:	double):	double	=	3.1416	*	(square(R)	-	square(r))

//	end	of	[area_of_ring]

Given	 that	 the	 subtraction	 and	multiplication	 functions	 (on	 floating	 point	 numbers)	 are	 of	 the	 type
(double,	double)	->	double 	and	 square 	is	of	the	type	 (double)	->	double ,	it	is	a	simple	routine	to	verify
that	the	body	of	 area_of_ring 	can	be	assigned	the	type	 double .

Function	Arity

The	arity	of	a	function	is	the	number	of	arguments	the	function	takes.	Functions	of	arity	0,	1,	2	and	3
are	often	called	nullary,	unary,	binary	and	ternary	functions,	respectively.	For	example,	the	following
function	 sqrsum1 	is	a	binary	function	such	that	its	two	arguments	are	of	the	type	 int :

fn	sqrsum1	(x:	int,	y:	int):	int	=	x	*	x	+	y	*	y

We	can	define	a	unary	function	 sqrsum2 	as	follows:

//

typedef	int2	=	(int,	int)

//

fn	sqrsum2

		(xy:	int2):	int	=

		let	val	x	=	xy.0	and	y	=	xy.1	in	x	*	x	+	y	*	y	end

//	end	of	[sqrsum2]

The	keyword	 typedef 	introduces	a	binding	between	the	name	 int2 	and	the	tuple	type	 (int,	 int) .	 In
other	words,	 int2 	is	treated	as	an	abbreviation	or	alias	for	 (int,	int) .	The	function	 sqrsum2 	is	unary
as	 it	 takes	only	one	argument,	which	 is	a	 tuple	of	 the	 type	 int2 .	When	applying	 sqrsum2 	 to	 a	 tuple
consisting	of	 1 	and	 ~1 ,	we	need	to	write	 sqrsum2	@(1,	~1) .	If	we	simply	write	 sqrsum2	(1,	~1) ,	 then
the	typechecker	is	to	report	an	error	of	function	arity	mismatch	as	it	assumes	that	 sqrsum2 	is	applied
to	two	arguments	(instead	of	one	representing	a	pair).

Many	functional	languages	(e.g.,	Haskell	and	ML)	only	allow	unary	functions.	A	function	of	multiple
arguments	is	encoded	in	these	languages	as	a	unary	function	taking	a	tuple	as	its	only	argument	or	it
is	 curried	 into	 a	 function	 that	 takes	 these	 arguments	 sequentially.	 ATS,	 however,	 provides	 direct
support	for	functions	of	multiple	arguments.	There	is	even	some	limited	support	in	ATS	for	variadic
functions,	that	is,	functions	of	indefinite	number	of	arguments	(e.g.,	the	famous	 printf 	function	in	C).
This	is	a	topic	I	will	cover	elsewhere.

Function	Interface

The	interface	for	a	function	specifies	the	type	assigned	to	the	function.	Given	a	binary	function	foo	of
the	type	(T1,	T2)	->	T3,	its	interface	can	be	written	as	follows:

fun	foo	(arg1:	T1,	arg2:	T2):	T3

where	 arg1 	and	 arg2 	may	be	 replaced	with	any	other	 legal	 identifiers	 for	 function	arguments.	For
functions	of	more	or	fewer	arguments,	interfaces	can	be	written	in	a	similar	fashion.	For	instance,	we
have	the	following	interfaces	for	various	functions	on	integers:

fun	succ_int	(x:	int):	int	//	successor

fun	pred_int	(x:	int):	int	//	predecessor

fun	add_int_int	(x:	int,	y:	int):	int	//	+

fun	sub_int_int	(x:	int,	y:	int):	int	//	-

fun	mul_int_int	(x:	int,	y:	int):	int	//	*

fun	div_int_int	(x:	int,	y:	int):	int	//	/

fun	mod_int_int	(x:	int,	y:	int):	int	//	modulo

fun	gcd_int_int	(x:	int,	y:	int):	int	//	greatest	common	divisor

fun	lt_int_int	(x:	int,	y:	int):	bool	//	<

fun	lte_int_int	(x:	int,	y:	int):	bool	//	<=

fun	gt_int_int	(x:	int,	y:	int):	bool	//	>

fun	gte_int_int	(x:	int,	y:	int):	bool	//	>=

fun	eq_int_int	(x:	int,	y:	int):	bool	//	=

fun	neq_int_int	(x:	int,	y:	int):	bool	//	<>

fun	max_int_int	(x:	int,	y:	int):	int	//	maximum

fun	min_int_int	(x:	int,	y:	int):	int	//	minimum

fun	print_int	(x:	int):	void

fun	tostring_int	(x:	int):	string

For	now,	I	mostly	use	function	 interfaces	 for	 the	purpose	of	presenting	functions.	 I	will	show	later
how	a	function	definition	can	be	separated	into	two	parts:	a	function	interface	and	an	implementation
that	implements	the	function	interface.	Note	that	separation	as	such	is	pivotal	for	constructing	(large)
programs	in	a	modular	style.

Evaluation	of	Function	Calls

Evaluating	a	function	call	is	straightforward.	Assume	that	we	are	to	evaluate	the	function	call	 abs(0.0
-	1.0) 	under	some	environment	ENV0,	where	the	function	 abs 	is	defined	as	follows:

fn	abs	(x:	double):	double	=	if	x	>=	0.0	then	x	else	~x

We	first	evaluate	the	argument	of	the	call	to	 ~1.0 	under	ENV0;	we	then	extend	ENV0	to	ENV1	with	a
binding	between	 x 	and	 ~1.0 	and	start	to	evaluate	the	body	of	 abs 	under	ENV1;	we	evaluate	the	test	 x
>=	0 	to	 ~1.0	>=	0 	and	then	to	 false ,	which	indicates	that	we	take	the	else-branch	 ~x 	to	continue;	we
evaluate	 ~x 	to	 ~(~1.0) 	and	then	to	 1.0 ;	so	the	evaluation	of	the	function	call	 abs(0.0	-	1.0) 	 returns
1.0 .

Recursive	Functions

A	recursive	function	is	one	that	may	make	calls	to	itself	in	its	body.	In	ATS,	the	keyword	 fun 	is	used
to	initiate	the	definition	of	a	recursive	function.	Clearly,	a	non-recursive	function	is	just	a	special	kind
of	recursive	function:	the	kind	that	does	not	make	any	calls	to	itself	in	its	body.	If	one	prefers,	one	can
use	 fun 	(instead	of	 fn)	to	initiate	the	definition	of	a	non-recursive	function.

I	consider	recursion	the	most	enabling	feature	a	programming	language	can	provide.	With	recursion,
we	are	enabled	to	do	problem-solving	based	on	a	strategy	of	reduction:	In	order	to	solve	a	problem
to	 which	 a	 solution	 is	 difficult	 to	 find	 immediately,	 we	 reduce	 the	 problem	 to	 problems	 that	 are
similar	but	simpler,	and	we	repeat	 this	reduction	process	 if	needed	until	solutions	become	apparent.
Let	us	now	see	some	concrete	examples	of	problem-solving	that	make	use	of	this	reduction	strategy.

Suppose	that	we	want	to	sum	up	all	the	integers	ranging	from	1	to	n,	where	n	is	a	given	integer.	This
can	be	readily	done	by	implementing	the	following	recursive	function	 sum1 :

fun	sum1	(n:	int):	int	=	if	n	>=	1	then	sum1	(n-1)	+	n	else	0

To	find	out	the	sum	of	all	the	integers	ranging	from	 1 	to	 n ,	we	call	 sum1	(n) .	The	reduction	strategy
for	 sum1	(n) 	is	straightforward:	If	 n 	is	greater	than	 1 ,	then	we	can	readily	find	the	value	of	 sum1	(n)
by	solving	a	simpler	problem,	that	is,	finding	the	value	of	 sum1	(n-1) .

We	can	also	solve	the	problem	by	implementing	the	following	recursive	function	 sum2 	that	sums	up
all	the	integers	in	a	given	range:

fun	sum2	(m:	int,	n:	int):	int	=	if	m	<=	n	then	m	+	sum2	(m+1,	n)	else	0

This	time,	we	call	 sum2	(1,	n) 	in	order	to	find	out	the	sum	of	all	the	integers	ranging	from	 1 	to	 n .
The	reduction	strategy	for	 sum2	(m,	n) 	is	also	straightforward:	If	 m 	is	less	than	 n ,	then	we	can	readily
find	the	value	of	 sum2	(m,	n) 	by	solving	a	simpler	problem,	that	is,	finding	the	value	of	 sum2	(m+1,	n) .
The	reason	for	 sum2	(m+1,	n) 	being	simpler	than	 sum2	(m,	n) 	is	that	 m+1 	is	closer	to	 n 	than	 m 	is.

Given	integers	m	and	n,	there	is	another	strategy	for	summing	up	all	the	integers	from	m	to	n:	If	m
does	not	exceed	n,	we	can	find	the	sum	of	all	the	integers	from	m	to	(m+n)/2-1	and	then	the	sum	of	all
the	 integers	 from	 (m+n)/2+1	 to	 n	 and	 then	 sum	 up	 these	 two	 sums	 and	 (m+n)/2.	 The	 following
recursive	function	 sum3 	is	implemented	precisely	according	to	this	strategy:

fun	sum3

		(m:	int,	n:	int):	int	=

		if	m	<=	n	then	let

				val	mn2	=	(m+n)/2	in	sum3	(m,	mn2-1)	+	mn2	+	sum3	(mn2+1,	n)

		end	else	0	//	end	of	[if]

//	end	of	[sum3]

It	should	be	noted	that	the	division	involved	in	the	expression	 (m+n)/2	 is	 integer	division	for	which
rounding	is	done	by	truncation.

Evaluation	of	Recursive	Function	Calls

Evaluating	a	call	to	a	recursive	function	is	not	much	different	from	evaluating	one	to	a	non-recursive
function.	Let	 fib 	be	the	following	defined	function	for	computing	the	Fibonacci	numbers:

fun	fib	(n:	int):	int	=

		if	n	>=	2	then	fib(n-1)	+	fib(n-2)	else	n

Suppose	 that	we	 are	 to	 evaluate	 fib(2) 	 under	 some	 environment	ENV0.	Given	 that	 2 	 is	 already	 a
value,	we	extend	ENV0	to	ENV1	with	a	binding	between	 n 	and	 2 	and	start	 to	evaluate	 the	body	of
fib 	under	ENV1;	clearly,	this	evaluation	leads	to	the	evaluation	of	 fib(n-1)	+	fib(n-2) ;	it	is	easy	to
see	 that	 evaluating	 fib(n-1) 	 and	 fib(n-2) 	 under	 ENV1	 leads	 to	 1 	 and	 0 ,	 respectively,	 and	 the
evaluation	of	 fib(n-1)	+	fib(n-2) 	eventually	returns	 1 	 (as	 the	result	of	 1+0);	 thus	 the	evaluation	of
fib(2) 	under	ENV0	yields	the	integer	value	 1 .

Let	us	now	evaluate	 fib(3) 	under	ENV0;	we	extend	ENV0	to	ENV2	with	a	binding	between	 n 	and	 3 ,
and	start	to	evaluate	the	body	of	 fib 	under	ENV2;	we	then	reach	the	evaluation	of	 fib(n-1)	+	fib(n-2)
under	ENV2;	evaluating	 fib(n-1) 	under	ENV2	leads	to	the	evaluation	of	 fib(2) 	under	ENV2,	which
eventually	returns	 1 ;	evaluating	 fib(n-2) 	under	ENV2	leads	to	the	evaluation	of	 fib(1) 	under	ENV2,
which	eventually	returns	 1 ;	therefore,	evaluating	 fib(3) 	under	ENV0	returns	 2 	(as	the	result	of	 1+1).

Example:	Coin	Changes	for	Fun

Let	S	be	a	finite	set	of	positive	numbers.	The	problem	we	want	to	solve	is	to	find	out	the	number	of
distinct	ways	for	a	given	integer	x	 to	be	expressed	as	 the	sum	of	multiples	of	 the	positive	numbers
chosen	from	S.	If	we	interpret	each	number	in	S	as	the	denomination	of	a	coin,	then	the	problem	asks
how	many	distinct	ways	there	exist	for	a	given	value	x	to	be	expressed	as	the	sum	of	a	set	of	coins.	If
we	use	cc(S,	x)	for	this	number,	then	we	have	the	following	properties	on	the	function	cc:

cc(S,	0)	=	1	for	any	S.

If	x	<	0,	then	cc(S,	x)	=	0	for	any	S.

If	S	is	empty	and	x	>	0,	then	cc(S,	x)	=	0.

If	S	contains	a	number	c,	 then	cc(S,	x)	=	cc(S1,	x)	+	cc(S,	x-c),	where	S1	 is	 the	 set	 formed	by
removing	c	from	S.

In	the	following	implementation,	we	fix	S	to	be	the	set	consisting	of	1,	5,	10	and	25.

typedef	int4	=	(int,	int,	int,	int)

val	theCoins	=	(1,	5,	10,	25):	int4

fun	coin_get

		(n:	int):	int	=

		if	n	=	0	then	theCoins.0

		else	if	n	=	1	then	theCoins.1

		else	if	n	=	2	then	theCoins.2

		else	if	n	=	3	then	theCoins.3

		else	~1	(*	erroneous	value	*)

//	end	of	[coin_get]

fun	coin_change

		(sum:	int):	int	=	let

		fun	aux	(sum:	int,	n:	int):	int	=

				if	sum	>	0	then

					(if	n	>=	0	then	aux	(sum,	n-1)	+	aux	(sum-coin_get(n),	n)	else	0)

				else	(if	sum	<	0	then	0	else	1)

		//	end	of	[aux]

in

		aux	(sum,	3)

end	//	end	of	[coin_change]

The	 auxiliary	 function	 aux 	 defined	 in	 the	 body	 of	 the	 function	 coin_change 	 corresponds	 to	 the	 cc
function	mentioned	above.	When	applied	to	 1000 ,	the	function	 coin_change 	returns	 142511 .

Note	that	the	entire	code	in	this	section	plus	some	additional	code	for	testing	is	available	on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_FUNCTION/coinchange.dats

Tail-Call	and	Tail-Recursion

Suppose	that	a	function	foo	makes	a	call	in	its	body	to	a	function	bar,	where	foo	and	bar	may	be	the
same	function.	If	the	return	value	of	the	call	to	bar	is	also	the	return	value	of	foo,	then	this	call	to	bar
is	a	tail-call.	If	foo	and	bar	are	the	same,	then	this	is	a	(recursive)	self	tail-call.	For	instance,	there	are
two	recursive	calls	in	the	body	of	the	function	 f91 	defined	as	follows:

fun	f91	(n:	int):	int	=

		if	n	>=	101	then	n	-	10	else	f91	(f91	(n+11))

where	the	outer	recursive	call	is	a	self	tail-call	while	the	inner	one	is	not.

If	 each	 recursive	 call	 in	 the	 body	 of	 a	 function	 is	 a	 tail-call,	 then	 this	 function	 is	 a	 tail-recursive
function.	For	instance,	the	following	function	 sum_iter 	is	tail-recursive:

fun	sum_iter

		(n:	int,	res:	int):	int	=

		if	n	>	0	then	sum_iter	(n-1,	n+res)	else	res

//	end	of	[sum_iter]

A	tail-recursive	function	is	often	referred	to	as	an	iterative	function.

In	ATS,	 the	 single	most	 important	 optimization	 is	 probably	 the	one	 that	 turns	 a	 self	 tail-call	 into	 a
local	 jump.	This	optimization	effectively	turns	every	tail-recursive	function	into	 the	equivalent	of	a
loop.	Although	ATS	provides	direct	syntactic	support	for	constructing	for-loops	and	while-loops,	the
preferred	 approach	 to	 loop	 construction	 in	 ATS	 is	 in	 general	 through	 the	 use	 of	 tail-recursive
functions.	This	is	the	case	primarily	due	to	the	fact	that	the	syntax	for	writing	tail-recursive	functions
is	compatible	with	 the	syntax	for	other	programming	features	 in	ATS	while	 the	syntax	for	 loops	 is
much	less	so.

Example:	The	Eight-Queens	Puzzle

The	eight-queens	puzzle	 is	 the	problem	of	positioning	on	a	8x8	chessboard	8	queen	pieces	 so	 that
none	of	them	can	capture	any	other	pieces	using	the	standard	chess	moves	defined	for	a	queen	piece.	I
will	present	as	follows	a	solution	to	this	puzzle	in	ATS,	reviewing	some	of	the	programming	features
that	have	been	covered	so	far.	In	particular,	please	note	that	every	recursive	function	implemented	in
this	solution	is	tail-recursive.

First,	let	us	introduce	a	name	for	the	integer	constant	8	as	follows:

#define	N	8

After	this	declaration,	each	occurrence	of	the	name	 N 	is	to	be	replaced	with	8.	For	representing	board
configurations,	we	define	a	type	 int8 	as	follows:

typedef	int8	=

(

		int,	int,	int,	int,	int,	int,	int,	int

)	//	end	of	[int8]

A	value	of	the	type	 int8 	is	a	tuple	of	8	integers	where	the	first	integer	states	the	column	position	of
the	 queen	 piece	 on	 the	 first	 row	 (row	 0),	 and	 the	 second	 integer	 states	 the	 column	 position	 of	 the
queen	piece	on	the	second	row	(row	1),	and	so	on.

In	order	to	print	out	a	board	configuration,	we	define	the	following	functions:

fun	print_dots	(i:	int):	void	=

		if	i	>	0	then	(print	".	";	print_dots	(i-1))	else	()

//	end	of	[print_dots]

fun	print_row	(i:	int):	void	=

(

		print_dots	(i);	print	"Q	";	print_dots	(N-i-1);	print	"\n";

)	//	end	of	[print_row]

fun	print_board	(bd:	int8):	void	=

(

		print_row	(bd.0);	print_row	(bd.1);	print_row	(bd.2);	print_row	(bd.3);

		print_row	(bd.4);	print_row	(bd.5);	print_row	(bd.6);	print_row	(bd.7);

		print_newline	()

)	//	end	of	[print_board]

The	function	 print_newline 	prints	out	a	newline	symbol	and	then	flushes	the	buffer	associated	with	the
standard	output.	If	the	reader	is	unclear	about	what	buffer	flushing	means,	please	feel	free	to	ignore
this	aspect	of	 print_newline .

As	an	example,	if	 print_board 	is	called	on	the	board	configuration	represented	by	@(0,	1,	2,	3,	4,	5,	6,
7),	then	the	following	8	lines	are	printed	out:

Q	

.	Q	

.	.	Q	

.	.	.	Q	

.	.	.	.	Q	.	.	.	

.	Q	.	.	

.	Q	.	

.	Q	

Given	a	board	and	the	row	number	of	a	queen	piece	on	the	board,	the	following	function	 board_get
returns	the	column	number	of	the	piece:

fun	board_get

		(bd:	int8,	i:	int):	int	=

		if	i	=	0	then	bd.0

		else	if	i	=	1	then	bd.1

		else	if	i	=	2	then	bd.2

		else	if	i	=	3	then	bd.3

		else	if	i	=	4	then	bd.4

		else	if	i	=	5	then	bd.5

		else	if	i	=	6	then	bd.6

		else	if	i	=	7	then	bd.7

		else	~1	//	end	of	[if]

//	end	of	[board_get]

Given	a	board,	a	row	number	 i	and	a	column	number	 j,	 the	following	function	 board_set 	 returns	a
new	board	that	are	the	same	as	the	original	board	except	for	j	being	the	column	number	of	the	queen
piece	on	row	i:

fun	board_set

		(bd:	int8,	i:	int,	j:int):	int8	=	let

		val	(x0,	x1,	x2,	x3,	x4,	x5,	x6,	x7)	=	bd

in

		if	i	=	0	then	let

				val	x0	=	j	in	(x0,	x1,	x2,	x3,	x4,	x5,	x6,	x7)

		end	else	if	i	=	1	then	let

				val	x1	=	j	in	(x0,	x1,	x2,	x3,	x4,	x5,	x6,	x7)

		end	else	if	i	=	2	then	let

				val	x2	=	j	in	(x0,	x1,	x2,	x3,	x4,	x5,	x6,	x7)

		end	else	if	i	=	3	then	let

				val	x3	=	j	in	(x0,	x1,	x2,	x3,	x4,	x5,	x6,	x7)

		end	else	if	i	=	4	then	let

				val	x4	=	j	in	(x0,	x1,	x2,	x3,	x4,	x5,	x6,	x7)

		end	else	if	i	=	5	then	let

				val	x5	=	j	in	(x0,	x1,	x2,	x3,	x4,	x5,	x6,	x7)

		end	else	if	i	=	6	then	let

				val	x6	=	j	in	(x0,	x1,	x2,	x3,	x4,	x5,	x6,	x7)

		end	else	if	i	=	7	then	let

				val	x7	=	j	in	(x0,	x1,	x2,	x3,	x4,	x5,	x6,	x7)

		end	else	bd	//	end	of	[if]

end	//	end	of	[board_set]

Clearly,	 the	 functions	 board_get 	 and	 board_set 	 are	 defined	 in	 a	 rather	 unwieldy	 fashion.	 This	 is
entirely	due	 to	 the	use	of	 tuples	 for	 representing	board	configurations.	 If	we	could	use	an	array	 to
represent	 a	 board	 configuration,	 then	 the	 implementation	 would	 be	 much	 simpler	 and	 cleaner.
However,	we	have	not	yet	covered	arrays	at	this	point.

Let	us	now	implement	two	testing	functions	 safety_test1 	and	 safety_test2 	as	follows:

fun	safety_test1

(

		i0:	int,	j0:	int,	i1:	int,	j1:	int

)	:	bool	=

(*

**	[abs]:	the	absolute	value	function

*)

		j0	!=	j1	andalso	abs	(i0	-	i1)	!=	abs	(j0	-	j1)

//	end	of	[safety_test1]

fun	safety_test2

(

		i0:	int,	j0:	int,	bd:	int8,	i:	int

)	:	bool	=

		if	i	>=	0	then

				if	safety_test1	(i0,	j0,	i,	board_get	(bd,	i))

						then	safety_test2	(i0,	j0,	bd,	i-1)	else	false

				//	end	of	[if]

		else	true	//	end	of	[if]

//	end	of	[safety_test2]

The	functionalities	of	these	two	functions	can	be	described	as	such:

The	function	 safety_test1 	 tests	whether	 a	queen	piece	on	 row	 i0 	 and	column	 j0 	 can	 capture
another	one	on	row	 i 	and	column	 j .

The	function	 safety_test2 	tests	whether	a	queen	piece	on	row	 i0 	and	column	 j0 	can	capture	any
other	pieces	on	a	given	board	with	a	row	number	less	than	or	equal	to	 i .

We	are	now	ready	to	implement	the	following	function	 search 	based	on	a	standard	depth-first	search
(DFS)	algorithm:

fun	search

(

		bd:	int8,	i:	int,	j:	int,	nsol:	int

)	:	int	=	(

//

if

j	<	N

then	let

		val	test	=	safety_test2	(i,	j,	bd,	i-1)

in

		if	test

				then	let

						val	bd1	=	board_set	(bd,	i,	j)

				in

						if	i+1	=	N

								then	let

										val	()	=	print!	("Solution	#",	nsol+1,	":\n\n")

										val	()	=	print_board	(bd1)

								in

										search	(bd,	i,	j+1,	nsol+1)

								end	//	end	of	[then]

								else	(

										search	(bd1,	i+1,	0(*j*),	nsol)	//	positioning	next	piece

)	(*	end	of	[else]	*)

						//	end	of	[if]

				end	//	end	of	[then]

				else	search	(bd,	i,	j+1,	nsol)

		//	end	of	[if]

end	//	end	of	[then]

else	(

		if	i	>	0

				then	search	(bd,	i-1,	board_get	(bd,	i-1)	+	1,	nsol)	else	nsol

		//	end	of	[if]

)	(*	end	of	[else]	*)

//

)	(*	end	of	[search]	*)

The	return	value	of	 search 	is	the	number	of	distinct	solutions	to	the	eight	queens	puzzle.	The	symbol
print! 	in	the	body	of	 search 	is	a	special	identifier	in	ATS:	It	takes	an	indefinite	number	of	arguments
and	 then	 applies	 print 	 to	 each	 of	 them.	 Following	 is	 the	 first	 solution	 printed	 out	 by	 print_board
during	a	call	to	the	function	 search :

Q	

.	.	.	.	Q	.	.	.	

.	Q	

.	Q	.	.	

.	.	Q	

.	Q	.	

.	Q	

.	.	.	Q	

There	are	92	distinct	solutions	in	total.

Note	that	the	entire	code	in	this	section	plus	some	additional	code	for	testing	is	available	on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_FUNCTION/queens.dats

Mutually	Recursive	Functions

A	collection	of	functions	are	defined	mutually	recursively	if	each	function	can	make	calls	in	its	body
to	 any	 functions	 in	 this	 collection.	 Mutually	 recursive	 functions	 are	 commonly	 encountered	 in
practice.

As	an	example,	let	P	be	a	function	on	natural	numbers	defined	as	follows:

P(0)	=	1

P(n+1)	=	1	+	the	sum	of	the	products	of	i	and	P(i)	for	i	ranging	from	1	to	n

Let	us	 introduce	a	 function	Q	such	 that	Q(n)	 is	 the	 sum	of	 the	products	of	 i	 and	P(i)	 for	 i	 ranging
from	1	to	n.	Then	the	functions	P	and	Q	can	be	defined	mutually	recursively	as	follows:

P(0)	=	1

P(n+1)	=	1	+	Q(n)

Q(0)	=	0

Q(n+1)	=	Q(n)	+	(n+1)	*	P(n+1)

The	following	implementation	of	P	and	Q	is	a	direct	translation	of	their	definitions	into	ATS:

fun	P	(n:int):	int	=	if	n	>	0	then	1	+	Q(n-1)	else	1

and	Q	(n:int):	int	=	if	n	>	0	then	Q(n-1)	+	n	*	P(n)	else	0

Note	that	the	keyword	 and 	is	used	to	combine	function	definitions.

Mutually	Defined	Tail-Recursion

Suppose	that	foo	and	bar	are	two	mutually	defined	recursive	functions.	In	the	body	of	foo	or	bar,	a
tail-call	to	foo	or	bar	is	a	mutually	recursive	tail-call.	For	instance,	the	following	two	functions	 isevn
and	 isodd 	are	mutually	recursive:

fun	isevn	(n:	int):	bool	=	if	n	>	0	then	isodd	(n-1)	else	true

and	isodd	(n:	int):	bool	=	if	n	>	0	then	isevn	(n-1)	else	false

The	mutually	recursive	call	to	 isodd 	in	the	body	of	 isevn 	is	a	tail-call,	and	the	mutually	recursive	call
to	 isevn 	in	the	body	of	 isodd 	is	also	a	tail-call.	If	we	want	that	these	two	tail-calls	be	compiled	into
local	jumps,	we	should	replace	the	keyword	 fun 	with	the	keyword	 fnx 	as	follows:

fnx	isevn	(n:	int):	bool	=	if	n	>	0	then	isodd	(n-1)	else	true

and	isodd	(n:	int):	bool	=	if	n	>	0	then	isevn	(n-1)	else	false

What	the	ATS	compiler	does	in	this	case	is	to	combine	these	two	functions	into	a	single	one	so	that
each	mutually	recursive	tail-call	 in	 their	bodies	can	be	turned	into	a	self	 tail-call	 in	 the	body	of	 the
combined	function,	which	is	then	ready	to	be	compiled	into	a	local	jump.

When	writing	code	corresponding	to	embedded	loops	in	an	imperative	programming	language	such
as	C	or	 Java,	we	often	need	 to	make	sure	 that	mutually	 recursive	 tail-calls	 are	compiled	 into	 local
jumps.	The	following	function	 print_multable 	 is	 implemented	 to	print	out	a	 standard	multiplication
table	for	nonzero	digits:

fun

print_multable

		((*void*))	=	let

//

#define	N	9

//

fnx

loop1

		(i:	int):	void	=

		if	i	<=	N	then	loop2	(i,	1)	else	()

//

and

loop2

		(i:	int,	j:	int):	void	=

		if	j	<=	i

				then	let

						val	()	=	if	j	>=	2	then	print	"	"

						val	()	=	$extfcall(void,	"printf",	"%dx%d=%2.2d",	j,	i,	j*i)

				in

						loop2	(i,	j+1)	

				end	//	end	of	[then]

				else	let

						val	()	=	print_newline	()	in	loop1	(i+1)

				end	//	end	of	[else]

		//	end	of	[if]

//

in

		loop1	(1)

end	//	end	of	[print_multable]

The	functions	 loop1 	and	 loop2 	are	defined	mutually	recursively,	and	the	mutually	recursive	calls	in
their	bodies	are	all	tail-calls.	The	keyword	 fnx 	indicates	to	the	ATS	compiler	that	the	functions	 loop1
and	 loop2 	 should	 be	 combined	 so	 that	 these	 tail-calls	 can	 be	 compiled	 into	 local	 jumps.	 In	 a	 case
where	 N 	is	a	large	number	(e.g.,	1,000,000),	calling	 loop1 	may	run	the	risk	of	stack	overflow	if	these
tail-calls	are	not	compiled	into	local	jumps.

When	called,	the	function	 print_multable 	prints	out	the	following	multiplication	table:

1x1=01

1x2=02	2x2=04

1x3=03	2x3=06	3x3=09

1x4=04	2x4=08	3x4=12	4x4=16

1x5=05	2x5=10	3x5=15	4x5=20	5x5=25

1x6=06	2x6=12	3x6=18	4x6=24	5x6=30	6x6=36

1x7=07	2x7=14	3x7=21	4x7=28	5x7=35	6x7=42	7x7=49

1x8=08	2x8=16	3x8=24	4x8=32	5x8=40	6x8=48	7x8=56	8x8=64

1x9=09	2x9=18	3x9=27	4x9=36	5x9=45	6x9=54	7x9=63	8x9=72	9x9=81

In	summary,	the	very	ability	to	turn	mutually	recursive	tail-calls	into	local	jumps	makes	it	possible	to
implement	 embedded	 loops	 as	 mutually	 tail-recursive	 functions.	 This	 ability	 is	 indispensable	 for
advocating	the	practice	of	replacing	loops	with	recursive	functions	in	ATS.

Envless	Functions	and	Closure-Functions

I	use	envless	 as	 a	 shorthand	 for	 environmentless,	which	 is	not	 a	 legal	word	but	 I	 suppose	 that	you
have	no	problem	figuring	out	what	it	means.

An	envless	function	is	represented	by	a	pointer	pointing	to	some	place	in	a	code	segment	where	the
object	 code	 for	 executing	 a	 call	 to	 this	 function	 is	 located.	 Every	 function	 in	 the	 programming
language	C	is	envless.	A	closure-function	 is	also	represented	by	a	pointer,	but	 the	pointer	points	 to
some	place	in	a	heap	where	a	tuple	is	allocated	(at	run-time).	Usually,	the	first	component	of	this	tuple
is	a	pointer	representing	an	envless	function	and	the	rest	of	the	components	represent	some	bindings.
A	tuple	as	such	is	often	referred	to	as	a	closure-function	or	simply	closure,	which	can	be	thought	of
as	an	envless	 function	paired	with	an	environment.	 It	 is	possible	 that	 the	environment	of	a	closure-
function	is	empty,	but	this	does	not	equate	a	closure-function	with	an	envless	function.	Every	function
in	functional	languages	such	as	ML	and	Haskell	is	a	closure-function.

In	the	following	example,	the	function	 sum ,	which	is	assigned	the	type	 (int)	->	int ,	sums	up	all	the
integers	between	1	and	a	given	natural	number:

fun	sum

		(n:	int):	int	=	let

		fun	loop

		(

				i:	int,	res:	int

)	:<cloref1>	int	=

				if	i	<=	n	then	loop	(i+1,	res+i)	else	res

		//	end	of	[loop]

in

		loop	(1(*i*),	0(*res*))

end	//	end	of	[sum]

The	inner	function	 loop 	is	a	closure-function	as	is	indicated	by	the	special	syntax	 :<cloref1> ,	and	the
type	assigned	to	 loop 	is	denoted	by	 (int,	int)	-<cloref1>	int .	Hence,	envless	functions	and	closure-
functions	can	be	distinguished	at	the	level	of	types.

If	 the	 syntax	 :<cloref1> 	 is	 replaced	 with	 the	 colon	 symbol	 : 	 alone,	 the	 code	 can	 still	 pass
typechecking	but	 its	compilation	may	eventually	 lead	 to	a	warning	or	even	an	error	 indicating	 that
loop 	cannot	be	compiled	into	a	toplevel	function	in	C.	The	reason	for	this	warning/error	is	due	to	the
body	of	 loop 	containing	a	variable	 n 	that	is	neither	at	toplevel	nor	a	part	of	the	arguments	of	 loop
itself.	 It	 is	 straightforward	 to	 make	 loop 	 an	 envless	 function	 by	 including	 n 	 as	 an	 argument	 in

addition	to	the	original	ones:

fun	sum

		(n:	int):	int	=	let

		fun	loop

		(

				n:int,	i:	int,	res:	int

)	:	int	=

				if	i	<=	n	then	loop	(n,	i+1,	res+i)	else	res

		//	end	of	[loop]

in

		loop	(n,	1(*i*),	0(*res*))

end	//	end	of	[sum]

As	a	matter	of	fact,	what	happens	during	compilation	is	that	the	first	implementation	of	 sum 	and	 loop
gets	 translated,	 more	 or	 less,	 into	 the	 second	 implementation,	 and	 there	 is	 no	 actual	 creation	 of
closures	at	run-time.

The	need	for	creating	closures	often	appears	when	a	function	is	not	directly	applied.	For	instance,	the
return	 value	 of	 a	 function	 call	may	 also	 be	 a	 function.	 In	 the	 following	 code,	 the	 defined	 function
addx 	 returns	 another	 function	 when	 applied	 to	 a	 given	 integer	 x ,	 and	 the	 returned	 function	 is	 a
closure-function,	which	always	adds	the	integer	 x 	to	its	own	argument:

fun	addx	(x:	int):	int	-<cloref1>	int	=	lam	y	=>	x	+	y

val	plus1	=	addx	(1)	//	[plus1]	is	of	the	type	int	-<cloref1>	int

val	plus2	=	addx	(2)	//	[plus2]	is	of	the	type	int	-<cloref1>	int

It	should	be	clear	that	 plus1(0) 	and	 plus2(0) 	return	 1 	and	 2 ,	respectively.	The	closure-function	that
is	 given	 the	name	 plus1 	 consists	 of	 an	 envless	 function	 and	 an	 environment	 binding	 x 	 to	 1 .	 The
envless	function	can	essentially	be	described	by	the	pseudo	syntax	 lam	(env,	y)	=>	env.x	+	y ,	where
env 	and	 env.x 	refer	to	an	environment	and	the	value	to	which	 x 	is	bound	in	that	environment.	When
evaluating	 plus1(0) ,	we	can	first	bind	 env 	and	 y 	 to	 the	environment	 in	 plus1 	and	 the	argument	 0 ,
respectively,	and	then	start	to	evaluate	the	body	of	the	envless	function	in	 plus1 ,	which	is	 env.x	+	y .
Clearly,	this	evaluation	yields	the	value	 1 	as	is	expected.

Closures	are	often	passed	as	arguments	to	functions	that	are	referred	to	as	higher-order	functions.	It
is	also	fairly	common	for	closures	to	be	embedded	in	data	structures.

Higher-Order	Functions

A	 higher-order	 function	 is	 a	 function	 that	 take	 another	 function	 as	 its	 argument.	 For	 instance,	 the
following	defined	function	 rtfind 	is	a	higher-order	one:

fun	rtfind

		(f:	int	->	int):	int	=	let

		fun	loop	(

				f:	int	->	int,	n:	int

)	:	int	=

				if	f(n)	=	0	then	n	else	loop	(f,	n+1)

		//	end	of	[loop]

in

		loop	(f,	0)

end	//	end	of	[rtfind]

Given	a	function	from	integers	to	integers,	 rtfind 	searches	for	the	first	natural	number	that	is	a	root
of	 the	 function.	For	 instance,	calling	 rtfind 	on	 the	polynomial	 function	 lam	 x	 =>	 x	 *	 x	 -	 x	 -	 110
returns	 11 .	Note	that	 rtfind 	loops	forever	if	it	is	applied	to	a	function	that	does	not	have	a	root.

Higher-order	 functions	 can	 greatly	 facilitate	 code	 reuse,	 and	 I	 now	 present	 a	 simple	 example	 to
illustrate	this	point.	The	following	defined	functions	 sum 	and	 prod 	compute	the	sum	and	product	of
the	integers	ranging	from	1	to	a	given	natural	number,	respectively:

fun	sum	(n:	int):	int	=	if	n	>	0	then	sum	(n-1)	+	n	else	0

fun	prod	(n:	int):	int	=	if	n	>	0	then	prod	(n-1)	*	n	else	1

The	similarity	between	the	functions	 sum 	and	 prod 	is	evident.	We	can	define	a	higher-function	 ifold
and	then	implement	 sum 	and	 prod 	based	on	 ifold :

fun	ifold

		(n:	int,	f:	(int,	int)	->	int,	ini:	int):	int	=

		if	n	>	0	then	f	(ifold	(n-1,	f,	ini),	n)	else	ini

//	end	of	[ifold]

fun	sum	(n:	int):	int	=	ifold	(n,	lam	(res,	x)	=>	res	+	x,	0)

fun	prod	(n:	int):	int	=	ifold	(n,	lam	(res,	x)	=>	res	*	x,	1)

If	we	ever	want	to	compute	the	sum	of	the	squares	of	the	integers	ranging	from	1	to	a	given	natural
number	n,	we	can	readily	do	it	by	defining	a	function	based	on	 ifold 	as	follows:

fun	sqrsum	(n:	int):	int	=	ifold	(n,	lam	(res,	x)	=>	res	+	x	*	x,	0)

Suppose	we	generalize	 sqrsum 	to	the	following	function	 sqrmodsum 	in	order	to	compute	the	sum	of	the
squares	of	the	integers	ranging	from	1	to	n	that	are	multiples	of	a	given	number	d:

fun	sqrmodsum	(n:	int,	d:	int):	int	=

		ifold	(n,	lam	(res,	x)	=>	if	x	mod	d	then	res	+	x	*	x	else	res,	0)

//	end	of	[sqrmodsum]

For	 someone	 unfamilar	with	 the	 distinction	 between	 an	 envless	 function	 and	 a	 closure-function,	 it
may	be	a	bit	suprising	to	learn	that	this	generalization	does	not	actually	work.	The	simple	reason	is
that	 ifold 	expects	its	second	argument	to	be	an	envless	function	but	the	function	passed	to	 ifold 	 in
the	 body	 of	 sqrmodsum 	 is	 clearly	 not	 envless	 (due	 to	 its	 use	 of	 d).	 To	 address	 the	 issue,	 we	 can
implement	a	variant	of	 ifold 	as	follows	and	then	implement	 sqrmodsum 	based	on	this	variant:

fun	ifold2

(

		n:	int,	f:	(int,	int)	-<cloref1>	int,	ini:	int

)	:	int	=

		if	n	>	0	then	f	(ifold2	(n-1,	f,	ini),	n)	else	ini

//	end	of	[ifold2]

fun	sqrmodsum	(n:	int,	d:	int):	int	=

		ifold2	(n,	lam	(res,	x)	=>	if	x	mod	d	then	res	+	x	*	x	else	res,	0)

//	end	of	[sqrmodsum]

While	 ifold2 	 is	indeed	more	general	than	 ifold ,	 this	generality	does	come	with	a	price.	Whenever
sqrmodsum 	 is	 called,	 a	 closure-function	 must	 be	 created	 on	 heap	 and	 then	 passed	 to	 ifold2 ;	 this
closure-function	 is	of	no	 further	use	after	 the	call	 returns	and	 the	memory	 it	occupies	can	only	be
properly	relcaimed	through	garbage	collection	(GC).	Therefore,	calling	functions	like	 sqrmodsum 	can
readily	 result	 in	memory	 leaks	 in	 a	 setting	where	GC	 is	 not	 available.	 Fortunately,	 there	 are	 also
linear	closure-functions	in	ATS,	which	do	not	cause	any	memory	leaks	even	in	the	absence	of	GC	as
they	are	required	to	be	explicitly	freed	by	the	programmer.	I	will	cover	this	interesting	programming
feature	elsewhere.

As	more	features	of	ATS	are	introduced,	higher-order	functions	will	become	even	more	effective	in
facilitating	code	reuse.

Example:	Binary	Search	for	Fun

While	 binary	 search	 is	 often	 performed	 on	 an	 ordered	 array	 to	 check	whether	 a	 given	 element	 is
stored	 in	 that	array,	 it	can	also	be	employed	 to	compute	 the	 inverse	of	an	 increasing	or	decreasing
function	 on	 integers.	 In	 the	 following	 code,	 the	 defined	 function	 bsearch_fun 	 returns	 an	 integer	 i0
such	that	f(i)	<=	x0	holds	for	i	ranging	from	lb	to	i0,	inclusive,	and	x0	<	f(i)	holds	for	i	ranging	from
i0+1	to	ub,	inclusive:

//

//	The	type	[uint]	is	for	unsigned	integers

//

fun	bsearch_fun

(

		f:	int	-<cloref1>	uint

,	x0:	uint,	lb:	int,	ub:	int

)	:	int	=

		if	lb	<=	ub	then	let

				val	mid	=	lb	+	(ub	-	lb)	/	2

		in

				if	x0	<	f	(mid)	then

						bsearch_fun	(f,	x0,	lb,	mid-1)

				else

						bsearch_fun	(f,	x0,	mid+1,	ub)

				//	end	of	[if]

		end	else	ub	//	end	of	[if]

//	end	of	[bsearch_fun]

As	an	example,	the	following	function	 isqrt 	is	defined	based	on	 bsearch_fun 	to	compute	the	integer
square	root	of	a	given	natural	number,	that	is,	the	largest	integer	whose	square	is	less	than	or	equal	to
the	given	natural	number:

//

//	Assuming	that	[uint]	is	of	32	bits

//

val	ISQRT_MAX	=	(1	<<	16)	-	1	//	=	65535

fun	isqrt

		(x:	uint):	int	=

		bsearch_fun	(lam	i	=>	square(g0i2u(i)),	x,	0,	ISQRT_MAX)

//	end	of	[isqrt]

Note	 that	 the	 function	 g0i2u 	 is	 for	 casting	 a	 signed	 integer	 into	 an	 unsigned	 one	 and	 the	 function
square 	returns	the	square	of	its	argument.

Please	find	on-line	the	entire	code	in	this	section	plus	some	additional	code	for	testing.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_FUNCTION/bsearch.dats

Example:	A	Higher-Order	Fun	Puzzle

Let	us	first	introduce	a	type	definition	as	follows:

typedef	I	(a:t@ype)	=	a	-<cloref1>	a

Given	a	 type	T,	 I(T)	 is	 for	a	closure-function	 that	maps	a	given	 input	value	of	 type	T	 to	an	output
value	of	the	same	type	T.	Given	a	function	f	of	type	I(T),	we	can	compose	f	with	itself	to	form	another
function,	which	just	applies	f	twice	to	a	given	argument.	The	following	function	template	 twice 	does
precisely	the	described	function	composition:

fn{a:t0p}

twice	(f:	I(a)):<cloref>	I(a)	=	lam	(x)	=>	f	(f	(x))

Let	us	now	take	a	look	at	some	interesting	code	involving	 twice 	that	is	also	likely	to	be	puzzling:

//

typedef	I0	=	int

typedef	I1	=	I(I0)

typedef	I2	=	I(I1)

typedef	I3	=	I(I2)

//

val	Z	=	0

val	S	=	lam	(x:	int):	int	=<cloref>	x	+	1

val	ans0	=	twice<I0>(S)(Z)

val	ans1	=	twice<I1>(twice<I0>)(S)(Z)

val	ans2	=	twice<I2>(twice<I1>)(twice<I0>)(S)(Z)

val	ans3	=	twice<I3>(twice<I2>)(twice<I1>)(twice<I0>)(S)(Z)

//

Note	that	the	type	definitions	 I0 ,	 I1 ,	 I2 ,	and	 I3 	are	introduced	to	make	the	above	code	more	easily
accessible.

Obviously,	 Z 	stands	for	the	integer	0	and	 S 	for	the	successor	function	on	integers.	Also,	 ans0 	equals
2	as	it	is	the	result	of	applying	 S 	to	 Z 	twice.	Let	 S2 	be	the	function	that	applies	 S 	twice.	It	is	clear	that
ans1 	is	the	result	of	applying	 S2 	to	 Z 	twice	and	thus	equals	4.	With	a	bit	more	effort,	one	should	be
able	to	figure	out	that	the	value	of	 ans2 	is	16.	What	is	the	value	of	 ans3 ?	In	general,	what	is	the	nth
value	in	the	sequence	of	 ans0 ,	 ans1 ,	 ans2 ,	etc.?	I	leave	these	questions	as	exercises	for	the	interested
reader.

Please	find	on-line	the	entire	code	in	this	section	plus	some	additional	code	for	testing.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_FUNCTION/twice.dats

Currying	and	Uncurrying

Currying,	which	is	named	after	the	logician	Haskell	Curry,	means	to	turn	a	function	taking	multiple
arguments	 simultaneously	 into	 a	 function	 of	 the	 same	 body	 (modulo	 corresponding	 recursive
function	calls	being	changed	accordingly)	that	takes	these	arguments	sequentially.	Uncurrying	means
precisely	 the	opposite	of	currying.	 In	 the	 following	code,	both	of	 the	defined	 functions	 acker1 	 and
acker2 	 implement	the	Ackermann's	function	(which	is	famous	for	being	recursive	but	not	primitive
recursive):

fun	acker1

		(m:	int,	n:	int):	int	=

(

		if	m	>	0	then

				if	n	>	0	then	acker1	(m-1,	acker1	(m,	n-1))	else	acker1	(m-1,	1)

		else	n+1	//	end	of	[if]

)

fun	acker2

		(m:	int)	(n:	int):	int	=

(

		if	m	>	0	then

				if	n	>	0	then	acker2	(m-1)	(acker2	m	(n-1))	else	acker2	(m-1)	1

		else	n+1	//	end	of	[if]

)

The	function	 acker2 	is	a	curried	version	of	 acker1 	while	the	function	 acker1 	in	an	uncurried	version
of	 acker2 .	Applying	 acker2 	to	an	integer	value	generates	a	closure-function,	which	causes	a	memory-
leak	unless	it	can	be	reclaimed	by	garbage	collection	(GC)	at	run-time.

In	functional	languages	such	as	ML	and	Haskell,	a	function	of	multiple	arguments	needs	to	be	either
curried	or	translated	into	a	corresponding	unary	function	of	a	single	argument	that	itself	is	a	tuple.	In
such	languages,	currying	often	leads	to	better	performance	at	run-time	and	thus	is	preferred.	In	ATS,
functions	of	multiple	arguments	are	supported	directly.	Also,	given	a	function	of	multiple	arguments,
a	 curried	 version	 of	 the	 function	 is	 likely	 to	 perform	 less	 efficiently	 at	 run-time	 than	 the	 function
itself	(due	to	the	treatment	of	curried	functions	by	the	ATS	compiler	atsopt).	Therefore,	the	need	for
currying	 in	 ATS	 is	 greatly	 diminished.	 Unless	 convincing	 reasons	 can	 be	 given,	 currying	 is	 in
general	not	a	recommended	programming	style	in	ATS.

Please	find	on-line	the	entire	code	in	this	section	plus	some	additional	code	for	testing.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_FUNCTION/acker.dats

Chapter	4.	Datatypes
The	feature	of	datatypes	in	ATS	in	largely	taken	from	ML.

A	datatype	is	like	a	tagged	union	type.	For	each	datatype,	there	are	some	constructors	associated	with
it,	 and	 these	 constructors	 are	 needed	 for	 constructing	 values	 of	 the	 datatype.	 As	 an	 example,	 the
following	syntax	declares	a	datatype	named	 intopt :

datatype	intopt	=

		|	intopt_none	of	()	|	intopt_some	of	(int)

//	end	of	[intopt]

There	 are	 two	 constructors	 associated	with	 intopt :	 intopt_none ,	which	 is	 nullary,	 and	 intopt_some ,
which	is	unary.	For	instance,	 intopt_none() 	and	 intopt_some(1) 	are	 two	values	of	 the	 type	 intopt .	 In
order	for	accessing	components	in	such	values,	a	mechanism	often	referred	to	as	pattern-matching	is
provided	in	ATS.	I	will	demonstrate	through	examples	that	datatypes	plus	pattern	matching	can	offer
not	only	great	convenience	in	programming	but	also	clarity	in	code.

The	code	employed	for	illustration	in	this	chapter	plus	some	additional	code	for	testing	is	available
on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_DATATYPE/

Patterns

Patterns	in	ATS	can	be	defined	inductively	as	follows:

Certain	constant	values	such	as	integers,	booleans,	chars,	floating	point	numbers,	and	strings	are
patterns.

The	void-value	()	is	a	pattern.

The	underscore	symbol	 _ 	represents	a	special	wildcard	pattern.

Variables	are	patterns.

A	tuple	of	patterns,	either	boxed	or	unboxed,	is	a	pattern.

A	record	of	patterns,	either	boxed	or	unboxed,	is	a	pattern.

Given	a	constructor	C,	a	pattern	can	be	formed	by	applying	C	to	a	given	list	of	patterns.

Given	a	variable	x	and	a	pattern	pat,	(x	 as 	pat)	is	a	reference-pattern,	where	 as 	is	a	keyword.

Some	other	forms	of	patterns	will	be	introduced	elsewhere.

Each	variable	can	occur	at	most	once	in	a	given	pattern,	and	this	is	referred	as	the	linearity	restriction
on	variables	in	patterns.	For	instance,	(x,	x)	is	not	a	legal	pattern	as	the	variable	x	appears	twice	in	it.
However,	this	restriction	does	not	apply	to	the	variable	 _ ,	which	represents	the	wildcard	pattern.

Pattern-Matching

Pattern	matching	means	matching	values	against	patterns.	In	the	case	where	a	value	matches	a	pattern,
a	collection	of	bindings	are	generated	between	the	variables	in	the	pattern	and	certain	components	in
the	value.	Pattern-matching	is	performed	according	to	the	following	set	of	rules:

A	value	that	matches	a	constant	pattern	must	be	the	same	constant,	and	this	matching	generates	no
bindings.

The	void-value	()	only	matches	the	void-pattern	(),	and	this	matching	generates	no	bindings.

Any	value	can	match	the	wildcard	pattern,	and	this	matching	generates	no	bindings.

Any	 value	 can	 match	 a	 variable	 pattern,	 and	 this	 matching	 generates	 a	 binding	 between	 the
variable	and	the	value.

A	tuple-value	matches	a	tuple-pattern	if	they	are	of	the	same	length	and	each	value	component	in
the	 former	 matches	 the	 corresponding	 pattern	 component	 in	 the	 latter,	 and	 this	 matching
generates	a	collection	of	bindings	that	is	the	union	of	the	bindings	generated	from	matching	the
value	components	in	the	tuple-value	against	the	pattern	components	in	the	tuple-pattern.

A	 record-value	 matches	 a	 record-pattern	 if	 they	 have	 the	 same	 field	 names	 and	 each	 value
component	 in	 the	 former	matches	 the	 corresponding	 pattern	 component	 in	 the	 latter,	 and	 this
matching	 generates	 a	 collection	 of	 bindings	 that	 is	 the	 union	 of	 the	 bindings	 generated	 from
matching	the	value	components	in	the	record-value	against	the	pattern	components	in	the	record-
pattern.

Given	a	pattern	formed	by	applying	a	constructor	C	to	some	pattern	arguments,	a	value	matches
this	pattern	if	the	value	is	formed	by	applying	C	to	some	value	arguments	matching	the	pattern
arguments,	and	this	matching	generates	a	collection	of	bindings	that	is	the	union	of	the	bindings
generated	from	matching	the	value	arguments	against	the	pattern	arguments.

Given	 a	 referenced	 pattern	 (x	 as 	 pat),	 a	 value	matches	 the	 pattern	 if	 it	 matches	 pat,	 and	 this
matching	generates	a	collection	of	bindings	that	extends	the	bindings	generated	from	matching
the	value	against	pat	with	a	binding	from	x	to	the	value.

Suppose	we	have	a	tuple-value	(0,	1,	2,	3)	and	a	tuple-pattern	(0,	_,	x,	y).	Then	the	value	matches	the
pattern	and	this	matching	yields	bindings	from	x	and	y	to	2	and	3,	respectively.

Matching	Clauses	and	Case-Expressions

Given	a	pattern	pat	and	an	expression	exp,	(pat	 => 	exp)	is	a	matching	clause.	The	pattern	pat	and	the
expression	exp	are	referred	to	as	the	guard	and	the	body	of	the	matching	clause.

Given	an	expression	exp0	and	a	sequence	of	matching	clauses	clseq,	a	case-expression	can	be	formed
as	such:	(case 	exp0	 of 	clseq).	To	evaluate	the	case-expression	under	a	given	environment	ENV0,	we
first	 evaluate	 exp0	under	ENV0	 to	 a	value.	 If	 this	 value	does	not	match	 the	guard	of	 any	 clause	 in
clseq,	then	the	evaluation	of	the	case-expression	aborts.	Otherwise,	we	choose	the	first	clause	in	clseq
such	that	the	value	matches	the	guard	of	the	clause.	Let	ENV1	be	the	environment	that	extends	ENV0
with	the	bindings	generated	from	this	matching,	and	we	evaluate	the	body	of	the	chosen	clause	under
ENV1.	The	value	obtained	from	this	evaluation	is	the	value	of	the	case-expression	being	evaluated.

Enumerative	Datatypes

The	 simplest	 form	 of	 datatypes	 is	 for	 enumerating	 a	 finite	 number	 of	 constants.	 For	 instance,	 the
following	concrete	syntax	introduces	a	datatype	of	the	name	 wday :

datatype	wday	=

		|	Monday	of	()

		|	Tuesday	of	()

		|	Wednesday	of	()

		|	Thursday	of	()

		|	Friday	of	()

		|	Saturday	of	()

		|	Sunday	of	()

//	end	of	[wday]

where	the	first	bar	symbol	(|)	is	optional.	There	are	7	nullary	constructors	introduced	in	the	datatype
declaration:	 Monday 	through	 Sunday ,	which	are	for	constructing	values	of	the	type	 wday .	For	instance,
Monday() 	is	a	value	of	the	type	 wday .	Given	a	nullary	constructor	C,	we	can	write	C	for	C()	as	a	value.
For	 instance,	 we	 can	 write	 Monday 	 for	 Monday() .	 However,	 one	 should	 not	 assume	 that	 Tuesday 	 is
something	like	 Monday+1 .

The	 following	 code	 implements	 a	 function	 that	 tests	 whether	 a	 given	 value	 of	 the	 type	 wday 	 is	 a
weekday	or	not:

fun	isWeekday

		(x:	wday):	bool	=	case	x	of

		|	Monday()	=>	true	//	the	first	bar	(|)	is	optional

		|	Tuesday()	=>	true

		|	Wednesday()	=>	true

		|	Thursday()	=>	true

		|	Friday()	=>	true

		|	Saturday()	=>	false

		|	Sunday()	=>	false

//	end	of	[isWeekday]

Given	a	unary	constructor	C,	C()	is	a	pattern	that	can	only	match	the	value	C().	Note	that	C()	cannot	be
written	as	C	when	it	is	used	as	a	pattern.	If	 Monday() 	is	written	as	 Monday 	 in	the	body	of	the	function
isWeekday ,	then	an	error	message	is	to	be	reported	during	typechecking,	indicating	that	all	the	clauses
after	 the	 first	 one	 are	 redundant.	 This	 is	 simply	 due	 to	 Monday 	 being	 treated	 as	 a	 variable	 pattern,
which	 is	 matched	 by	 any	 value.	 A	 likely	 more	 sensible	 implementation	 of	 isWeekday 	 is	 given	 as
follows:

fun	isWeekday

		(x:	wday):	bool	=	case	x	of

		|	Saturday()	=>	false	|	Sunday()	=>	false	|	_	=>	true

//	end	of	[isWeekday]

This	 implementation	works	because	pattern-matching	 is	done	sequentially	at	 run-time:	 If	a	value	of
the	type	 wday 	does	not	match	either	of	 Saturday() 	and	 Sunday() ,	then	it	must	match	one	of	 Monday() 	,
Tuesday() 	,	 Wednesday() 	,	 Thursday() ,	and	 Friday() .

Recursively	Defined	Datatypes

A	 recursively	 defined	 datatype	 (or	 recursive	 datatype	 for	 short)	 is	 one	 such	 that	 its	 associated
constructors	may	form	values	by	applying	to	values	of	the	datatype	itself.	For	instance,	the	following
declared	datatype	 charlst 	is	recursive:

datatype	charlst	=

		|	charlst_nil	of	()	|	charlst_cons	of	(char,	charlst)

//	end	of	[charlst]

When	applied	 to	 a	 character	 and	a	value	of	 the	 type	 charlst ,	 the	 constructor	 charlst_cons 	 forms	 a
value	of	the	type	 charlst .	As	an	example,	the	following	value	represents	a	character	list	consisting	of
'a',	'b'	and	'c':

charlst_cons('a',	charlst_cons('b',	charlst_cons('c',	charlst_nil())))

We	can	define	a	function	 charlst_length 	as	follows	to	compute	the	length	of	a	given	character	list:

fun	charlst_length

		(cs:	charlst):	int	=	case	cs	of

		|	charlst_cons	(_,	cs)	=>	1	+	charlst_length	(cs)

		|	charlst_nil	()	=>	0

//	end	of	[charlst_length]

Note	that	this	implementation	is	recursive	but	not	tail-recursive.	By	relying	on	the	commutativity	and
associativity	of	integer	addition,	we	can	give	the	following	implementation	of	 charlst_length 	that	is
tail-recursive:

fun	charlst_length

		(cs:	charlst):	int	=	let

//

fun	loop

		(cs:	charlst,	n:	int):	int	=	case	cs	of

		|	charlst_cons	(_,	cs)	=>	loop	(cs,	n+1)	|	charlst_nil	()	=>	n

//	end	of	[loop]

//

in

		loop	(cs,	0)

end	//	end	of	[charlst_length]

Note	that	 the	naming	convention	I	follow	closely	in	this	book	(and	elsewhere)	mandates	that	only	a
tail-recursive	function	be	given	a	name	indicative	of	its	being	a	loop.	A	non-tail-recursive	function	is

not	 called	 a	 loop	 because	 it	 cannot	 be	 translated	 directly	 to	 a	 loop	 in	 an	 imperative	 programming
language	like	C.

Exhaustiveness	of	Pattern-Matching

Given	a	type	T	and	a	set	of	patterns,	if	for	any	given	value	of	the	type	T	there	is	always	at	least	one
pattern	 in	 the	set	such	 that	 the	value	matches	 the	pattern,	 then	pattern-matching	values	of	 the	 type	T
against	the	set	of	patterns	is	exhaustive.	Given	a	case-expression	of	the	form	(case 	exp0	 of 	clseq),
where	 exp0	 is	 assumed	 to	 be	 of	 some	 type	T,	 if	 pattern-matching	 values	 of	 the	 type	T	 against	 the
guards	of	the	matching	clauses	in	clseq	is	exhaustive,	then	the	case-expression	is	said	to	be	pattern-
matching-exhaustive.

The	following	code	implements	a	function	that	finds	the	last	character	in	a	non-empty	character	list:

fun	charlst_last

		(cs:	charlst):	char	=

(

		case	cs	of

		|	charlst_cons	(c,	charlst_nil	())	=>	c

		|	charlst_cons	(_,	cs1)	=>	charlst_last	(cs1)

)

//	end	of	[charlst_last]

The	 body	 of	 charlst_last 	 is	 a	 case-expression,	which	 is	 not	 pattern-matching-exhaustive:	 If	 cs 	 is
bound	to	the	value	 charlst_nil() ,	that	is,	the	empty	character	list,	than	none	of	the	matching	clauses	in
the	 case-expression	 can	 be	 chosen.	When	 the	 code	 is	 typechecked	 by	 atsopt,	 a	warning	message	 is
issued	 to	 indicate	 the	 case-expression	 being	 non-pattern-matching-exhaustive.	 If	 the	 programmer
wants	an	error	message	instead,	the	keyword	 case 	should	be	replaced	with	 case+ .	If	the	programmer
wants	 to	suppress	 the	warning	message,	 the	keyword	 case 	 should	be	replaced	with	 case- .	 I	myself
mostly	use	 case+ 	when	coding	in	ATS.

The	function	 charlst_last 	can	also	be	implemented	as	follows:

fun	charlst_last

		(cs:	charlst):	char	=

(

		case	cs	of

		|	charlst_cons	(c,	cs1)	=>

				(

						case+	cs1	of

						|	charlst_nil	()	=>	c	|	charlst_cons	_	=>	charlst_last	(cs1)

)	//	end	of	[charlst_cons]

)	//	end	of	[charlst_last]

In	 this	 implementation,	 the	outer	case-expression	 is	not	pattern-matching-exhaustive	while	 the	 inner
one	 is.	Note	 that	 the	pattern	 charlst_cons	 _ 	 is	 just	a	 shorthand	 for	 charlst_cons(_,	 _) .	 In	 general,	 a
pattern	of	the	form	 C	_ ,	where	C	is	a	constructor	(associated	with	some	datatype),	can	be	matched	by
any	value	that	is	constructed	by	applying	C	to	some	values.	For	instance,	the	pattern	 charlst_nil() 	can
also	be	written	as	 charlst_nil	_ .

Suppose	we	have	a	case-expression	containing	only	one	matching	clause,	that	is,	the	case-expression
is	 of	 the	 form	 [case 	 exp0	 of 	 pat	 => 	 exp].	 Then	 we	 can	 also	 write	 this	 case-expression	 as	 a	 let-
expression:	(let 	 val 	pat	 = 	exp0	 in 	exp	 end).	For	instance,	we	give	another	implementation	of	the
function	 charlst_last 	as	follows:

fun	charlst_last

		(cs:	charlst):	char	=	let

		val	charlst_cons	(c,	cs1)	=	cs	in	case+	cs1	of

		|	charlst_nil	()	=>	c	|	charlst_cons	_	=>	charlst_last	(cs1)

end	//	end	of	[charlst_last]

When	this	implementation	is	typechecked	by	atsopt,	a	warning	message	is	issued	to	indicate	the	val-
declaration	 being	 non-pattern-matching-exhaustive.	 If	 the	 programmer	 wants	 an	 error	 message
instead,	 the	 keyword	 val 	 should	 be	 replaced	with	 val+ .	 If	 the	 programmer	 wants	 to	 suppress	 the
warning	message,	the	keyword	 val 	should	be	replaced	with	 val- .

As	 values	 formed	 by	 the	 constructors	 charlst_nil 	 and	 charlst_cons 	 are	 assigned	 the	 same	 type
charlst ,	 it	 is	 impossible	 to	 rely	 on	 typechecking	 to	 prevent	 the	 function	 charlst_last 	 from	 being
applied	to	an	empty	character	list.	This	is	a	serious	limitation.	With	dependent	types,	which	allow	data
to	be	described	much	more	precisely,	we	can	ensure	at	 the	level	of	types	that	a	function	finding	the
last	element	of	a	list	can	only	be	applied	to	a	non-empty	list.

Example:	Binary	Search	Tree

A	binary	search	tree	is	a	binary	tree	satisfying	the	following	property:	for	each	node	in	the	tree,	the
key	stored	in	the	node	is	greater	than	or	equal	to	every	key	stored	in	the	left	child	of	the	node	and	less
than	or	 equal	 to	 every	 key	 stored	 in	 the	 right	 child	 of	 the	 node.	 In	 other	words,	 a	 binary	 tree	 is	 a
binary	 search	 tree	 if	 a	 pre-order	 traversal	 encounters	 a	 sequence	 of	 keys	 ordered	 ascendingly
(according	 to	 some	ordering	on	keys).	 In	practice,	binary	 search	 trees	are	commonly	employed	 to
represent	sets	and	maps.

The	 following	declaration	 introduces	a	datatype	 bstree 	 for	binary	 search	 trees	 in	which	 the	 stored
keys	are	strings:

datatype	bstree	=

		|	E	of	()	|	B	of	(bstree,	string,	bstree)

//	end	of	[bstree]

It	should	be	noted	that	not	every	value	of	the	type	 bstree 	represents	a	valid	binary	search	tree	as	it	is
certainly	possible	to	construct	a	value	representing	a	binary	tree	but	not	a	binary	search	tree.

The	following	function	[bstree_inord]	does	a	in-order	traversal	of	a	given	binary	tree:

fun	bstree_inord

(

		t0:	bstree,	fwork:	string	-<cloref1>	void

)	:	void	=

(

case+	t0	of

|	E	()	=>	()

|	B	(t1,	k,	t2)	=>

		{

				val	()	=	bstree_inord	(t1,	fwork)

				val	()	=	fwork	(k)

				val	()	=	bstree_inord	(t2,	fwork)

		}

)	(*	end	of	[bstree_inord]	*)

If	[t0]	is	a	binary	search	tree,	then	the	sequence	of	keys	processed	by	[fwork]	are	ordered	ascendingly.

Given	a	binary	search	tree	and	a	key,	the	following	function	[bstree_search]	checks	whether	the	key	is
stored	inside	the	tree:

fun	bstree_search

		(t0:	bstree,	k0:	string):	bool	=

(

case+	t0	of

|	E	()	=>	false

|	B	(t1,	k,	t2)	=>	let

				val	sgn	=	compare	(k0,	k)

		in

				case+	0	of

				|	_	when	sgn	<	0	=>	bstree_search	(t1,	k0)

				|	_	when	sgn	>	0	=>	bstree_search	(t2,	k0)

				|	_	(*k0	=	k*)	=>	true

		end	//	end	of	[B]

)	(*	end	of	[bstree_search]	*)

Note	that	[bstree_search]	returns	true	if	the	given	key	is	found.	Otherwise,	it	returns	false.

Given	a	binary	search	 tree	and	a	key,	 the	 following	 function	 [bstree_insert]	 inserts	 the	key	 into	 the
tree:

fun	bstree_insert

		(t0:	bstree,	k0:	string):	bstree	=

(

case+	t0	of

|	E	()	=>	B	(E,	k0,	E)

|	B	(t1,	k,	t2)	=>	let

				val	sgn	=	compare	(k0,	k)

		in

				case+	0	of

				|	_	when	sgn	<	0	=>	B	(bstree_insert	(t1,	k0),	k,	t2)

				|	_	when	sgn	>	0	=>	B	(t1,	k,	bstree_insert	(t2,	k0))

				|	_	(*k0	=	k*)	=>	t0	//	[k0]	found	and	no	actual	insertion

		end	//	end	of	[B]

)	(*	end	of	[bstree_insert]	*)

Note	that	[bstree_insert]	inserts	the	key	only	if	it	is	not	already	stored	inside	the	given	tree.	Also,	if
inserted,	the	key	is	always	stored	in	a	newly	created	leaf	node.

Please	find	on-line	the	entirety	of	the	code	in	this	section	plus	some	additional	code	for	testing.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_DATATYPE/bstree.dats

Example:	Evaluating	Integer	Expressions

For	representing	integer	expressions,	we	declare	a	datatype	 IEXP 	as	follows:

datatype	IEXP	=

		|	IEXPcst	of	int	//	constants

		|	IEXPneg	of	(IEXP)	//	negative

		|	IEXPadd	of	(IEXP,	IEXP)	//	addition

		|	IEXPsub	of	(IEXP,	IEXP)	//	subtraction

		|	IEXPmul	of	(IEXP,	IEXP)	//	multiplication

		|	IEXPdiv	of	(IEXP,	IEXP)	//	division

//	end	of	[IEXP]

The	meaning	of	the	constructors	associated	with	 IEXP 	should	be	obvious.	A	value	of	the	type	 IEXP 	is
often	 referred	 to	as	an	abstract	 syntax	 tree.	For	 instance,	 the	abstract	 syntax	 tree	 for	 the	expression
(~1+(2-3)*4)	is	the	following	one:

IEXPadd(IEXPneg(IEXPcst(1)),	IEXPmul(IEXPsub(IEXPcst(2),	IEXPcst(3)),	IEXPcst(4)))

Translating	an	 integer	expression	written	 in	 some	string	 form	 into	an	abstract	 syntax	 tree	 is	 called
parsing,	which	we	will	not	do	here.	The	following	defined	function	 eval_iexp 	takes	the	abstract	syntax
tree	of	an	integer	expression	and	returns	an	integer	that	is	the	value	of	the	expression:

fun

eval_iexp

		(e0:	IEXP):	int	=

(

case+	e0	of

|	IEXPcst	(n)	=>	n

|	IEXPneg	(e)	=>	~eval_iexp	(e)

|	IEXPadd	(e1,	e2)	=>	eval_iexp	(e1)	+	eval_iexp	(e2)

|	IEXPsub	(e1,	e2)	=>	eval_iexp	(e1)	-	eval_iexp	(e2)

|	IEXPmul	(e1,	e2)	=>	eval_iexp	(e1)	*	eval_iexp	(e2)

|	IEXPdiv	(e1,	e2)	=>	eval_iexp	(e1)	/	eval_iexp	(e1)

)	(*	end	of	[eval_iexp]	*)

Suppose	 we	 also	 allow	 the	 construct	 if-then-else	 to	 be	 use	 in	 forming	 integer	 expressions.	 For
instance,	we	may	write	an	integer	expression	like	(if	1+2	<=	3*4	then	5+6	else	7-8).	Note	that	the	test
(1+2	<=	3*4)	 is	a	boolean	expression	rather	 than	an	 integer	expression.	This	 indicates	 that	we	also
need	 to	declare	a	datatype	 BEXP 	 for	 representing	boolean	expressions.	Furthermore,	 IEXP 	and	 BEXP
should	be	defined	mutually	recursively	as	follows:

datatype	IEXP	=

		|	IEXPcst	of	int	//	integer	constants

		|	IEXPneg	of	(IEXP)	//	negative

		|	IEXPadd	of	(IEXP,	IEXP)	//	addition

		|	IEXPsub	of	(IEXP,	IEXP)	//	subtraction

		|	IEXPmul	of	(IEXP,	IEXP)	//	multiplication

		|	IEXPdiv	of	(IEXP,	IEXP)	//	division

		|	IEXPif	of	(BEXP(*test*),	IEXP(*then*),	IEXP(*else*))

//	end	of	[IEXP]

and	BEXP	=	//	[and]	for	combining	datatype	declarations

		|	BEXPcst	of	bool	//	boolean	constants

		|	BEXPneg	of	BEXP	//	negation

		|	BEXPconj	of	(BEXP,	BEXP)	//	conjunction

		|	BEXPdisj	of	(BEXP,	BEXP)	//	disjunction

		|	BEXPeq	of	(IEXP,	IEXP)	//	equal-to

		|	BEXPneq	of	(IEXP,	IEXP)	//	not-equal-to

		|	BEXPlt	of	(IEXP,	IEXP)	//	less-than

		|	BEXPlte	of	(IEXP,	IEXP)	//	less-than-equal-to

		|	BEXPgt	of	(IEXP,	IEXP)	//	greater-than

		|	BEXPgte	of	(IEXP,	IEXP)	//	greater-than-equal-to

//	end	of	[BEXP]

Evidently,	we	 also	 need	 to	 evaluate	 boolean	 expressions	when	 evaluating	 integer	 expressions.	 The
following	 two	 functions	 eval_iexp 	 and	 eval_bexp 	 for	 evaluating	 integer	 and	 boolean	 expressions,
respectively,	are	defined	mutually	recursively	as	can	be	expected:

fun

eval_iexp

		(e0:	IEXP):	int	=

(

case+	e0	of

|	IEXPcst	n	=>	n

|	IEXPneg	(e)	=>	~eval_iexp	(e)

|	IEXPadd	(e1,	e2)	=>	eval_iexp	(e1)	+	eval_iexp	(e2)

|	IEXPsub	(e1,	e2)	=>	eval_iexp	(e1)	-	eval_iexp	(e2)

|	IEXPmul	(e1,	e2)	=>	eval_iexp	(e1)	*	eval_iexp	(e2)

|	IEXPdiv	(e1,	e2)	=>	eval_iexp	(e1)	/	eval_iexp	(e1)

|	IEXPif

		(

				e_test,	e_then,	e_else

)	=>

		(

				eval_iexp	(if	eval_bexp	(e_test)	then	e_then	else	e_else)

)	//	end	of	[IEXPif]

)	(*	end	of	[eval_iexp]	*)

and

eval_bexp

		(e0:	BEXP):	bool	=

(

case+	e0	of

|	BEXPcst	b	=>	b

|	BEXPneg	(e)	=>	~eval_bexp	(e)

|	BEXPconj	(e1,	e2)	=>

				if	eval_bexp	(e1)	then	eval_bexp	(e2)	else	false

|	BEXPdisj	(e1,	e2)	=>

				if	eval_bexp	(e1)	then	true	else	eval_bexp	(e2)

|	BEXPeq	(e1,	e2)	=>	eval_iexp	(e1)	=	eval_iexp	(e2)

|	BEXPneq	(e1,	e2)	=>	eval_iexp	(e1)	!=	eval_iexp	(e2)

|	BEXPlt	(e1,	e2)	=>	eval_iexp	(e1)	<	eval_iexp	(e2)

|	BEXPlte	(e1,	e2)	=>	eval_iexp	(e1)	<=	eval_iexp	(e2)

|	BEXPgt	(e1,	e2)	=>	eval_iexp	(e1)	>	eval_iexp	(e2)

|	BEXPgte	(e1,	e2)	=>	eval_iexp	(e1)	>=	eval_iexp	(e2)

)	(*	end	of	[eval_bexp]	*)

The	integer	and	boolean	expressions	used	in	this	example	are	all	constant	expressions	containing	no
variables.	 Therefore,	 there	 is	 no	 need	 for	 an	 environment	 to	 evaluate	 them.	 I	will	 present	 a	more
advanced	example	elsewhere	to	demonstrate	how	an	evaluator	for	a	simple	call-by-value	functional
programming	language	like	the	core	of	ATS	can	be	implemented.

Please	find	on-line	the	entirety	of	the	code	in	this	section	plus	some	additional	code	for	testing.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_DATATYPE/intexp.dats

Chapter	5.	Parametric	Polymorphism
Code	sharing	 is	of	paramount	 importance	 in	programming.	 In	 a	 typed	programming	 language,	we
often	encounter	a	situation	where	the	same	functionality	is	needed	for	values	of	different	types.	For
instance,	we	may	need	to	compute	the	length	of	a	list	while	the	elements	in	the	list	can	be	characters,
integers,	strings,	etc.	Evidently,	we	want	to	avoid	implementing	a	list-length	function	for	each	element
type	as	 it	would	probably	be	 the	worst	 form	of	code	duplication.	We	want	 to	 implement	one	single
function	 that	 can	 be	 applied	 to	 any	 list	 to	 compute	 the	 length	 of	 the	 list.	 This	 list-length	 function
parameterizes	 over	 the	 element	 type	 of	 a	 given	 list,	 and	 it	 behaves	 uniformly	 regardless	what	 the
element	type	is.	This	is	a	form	of	code	sharing	that	is	often	referred	to	as	parametric	polymorphism,
which	should	be	distinguished	from	other	forms	of	polymorphism	such	as	inheritance	polymorphism
in	object-oriented	programming.

The	code	employed	for	illustration	in	this	chapter	plus	some	additional	code	for	testing	is	available
on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_POLYMORPH

Function	Templates

A	 function	 template	 is	 a	 code	 template	 that	 implements	 a	 function.	 In	 the	 following	 code,	 two
functions	are	defined	to	swap	values:

typedef	charint	=	(char,	int)

typedef	intchar	=	(int,	char)

fun	swap_char_int	(xy:	charint):	intchar	=	(xy.1,	xy.0)

fun	swap_int_char	(xy:	intchar):	charint	=	(xy.1,	xy.0)

If	types	are	ignored,	the	bodies	of	 swap_char_int 	and	 swap_int_char 	are	identical.	In	order	to	avoid	this
kind	 of	 code	 duplication,	 we	 can	 first	 implement	 a	 function	 template	 swap 	 as	 follows	 and	 then
implement	 swap_char_int 	and	 swap_int_char 	based	on	 swap :

fun{

a,b:t@ype

}	swap	(xy:	(a,	b)):	(b,	a)	=	(xy.1,	xy.0)

fun	swap_char_int	(xy:	charint):	intchar	=	swap<char,int>	(xy)

fun	swap_int_char	(xy:	intchar):	charint	=	swap<int,char>	(xy)

It	should	be	noted	that	a	function	template	is	not	a	first-class	value	in	ATS:	There	is	no	expression	for
representing	 a	 function	 template.	 The	 syntax	 {a,b:t@ype} 	 following	 the	 keyword	 fun 	 represents
template	parameters	or	arguments.	The	unusual	symbol	 t@ype 	is	a	sort	for	static	terms	representing
types	of	unspecified	size,	where	the	size	of	a	type	is	 the	number	of	bytes	needed	for	representing	a
value	of	the	type	(under	the	assumption	that	all	of	the	values	of	the	type	have	the	same	size).	There	is
another	 sort	 type 	 in	 ATS,	 which	 is	 for	 static	 terms	 representing	 types	 of	 size	 equal	 to	 one	 word
exactly,	that	is,	4	bytes	on	a	32-bit	machine	or	8	bytes	on	a	64-bit	machine.	The	syntax	 swap<char,int> ,
where	no	space	is	allowed	between	 swap 	and	 < 	,	stands	for	an	instance	of	the	function	template	 swap
in	 which	 the	 parameters	 a 	 and	 b 	 are	 replaced	 with	 char 	 and	 int ,	 respectively.	 The	 syntax
swap<int,char> 	is	interpreted	similarly.

A	different	style	of	implementation	of	 swap 	is	given	as	follows:

fun{a:t@ype}{b:t@ype}	swap2	(xy:	(a,	b)):	(b,	a)	=	(xy.1,	xy.0)

where	the	template	parameters	are	given	sequentially	(instead	of	simultaneously).	The	following	code
shows	how	 swap2 	can	be	instantiated	to	form	instances:

fun	swap_char_int	(xy:	charint):	intchar	=	swap2<char><int>	(xy)

fun	swap_int_char	(xy:	intchar):	charint	=	swap2<int><char>	(xy)

Note	that	 >< 	is	a	special	symbol	(of	the	name	GTLT)	and	no	space	is	allowed	between	 > 	and	 < .

As	another	example,	a	higher-order	function	template	for	composing	(closure)	functions	is	given	as
follows:

typedef

cfun	(t1:t@ype,	t2:t@ype)	=	t1	-<cloref1>	t2

fun{

a,b,c:t@ype

}	compose	(

		f:	cfun	(a,	b),	g:	cfun	(b,	c)

)	:<cloref1>	cfun	(a,	c)	=	lam	x	=>	g(f(x))

val	inc_by_1	=	lam	(x:int):	int	=<cloref>	x+1

val	mul_by_2	=	lam	(x:int):	int	=<cloref>	x*2

val	f_2x_1	=	compose<int,int,int>	(mul_by_2,	inc_by_1)

val	f_2x_2	=	compose<int,int,int>	(inc_by_1,	mul_by_2)

It	should	be	clear	that	the	value	 f_2x_1 	represents	the	function	that	multiplies	its	integer	argument	by	2
and	 then	 adds	 1	 to	 the	 result.	 Similarly,	 the	 value	 f_2x_2 	 represents	 the	 function	 that	 adds	 1	 to	 its
integer	argument	and	then	multiplies	the	result	by	2.

In	ATS,	function	templates	are	typechecked	but	not	compiled	to	code	in	C.	Instead,	they	are	compiled
to	an	intermediate	form.	Only	instances	of	function	templates	are	compiled	to	code	in	C.	Suppose	we
have	a	function	template	 foo 	taking	one	type	parameter	and	two	instances	foo<T1>	and	foo<T2>	are
used	 in	 a	 program	 for	 some	 types	T1	 and	T2.	 In	 general,	 one	 function	 in	C	 is	 generated	 for	 each
instance	of	foo	when	the	program	is	compiled.	However,	if	T1	and	T2	have	the	same	name,	then	the
two	instances	may	share	one	function	in	C.

Please	note	that	I	may	simply	use	the	name	function	to	refer	to	a	function	template	from	now	on	if	no
confusion	is	expected.

Polymorphic	Functions

A	polymorphic	function	is	rather	similar	to	a	function	template.	However,	the	former	is	a	first-class
value	 in	 ATS	while	 the	 latter	 is	 not.	 As	 an	 example,	 the	 following	 defined	 function	 swap_boxed 	 is
polymorphic:

fun	swap_boxed{a,b:type}	(xy:	(a,	b)):	(b,	a)	=	(xy.1,	xy.0)

The	type	variables	 a 	and	 b 	are	often	referred	as	static	arguments	while	 xy 	is	a	dynamic	argument.
For	example,	the	following	code	makes	use	of	the	polymorphic	function	 swap_boxed :

val	AB	=	(box("A"),	box("B"))

val	BA1	=	swap_boxed{boxstr,boxstr}	(AB)

val	BA2	=	swap_boxed	(AB)	//	omitting	type	arguments	may	be	fine

where	 the	 type	 boxstr 	 is	 an	 explicitly	 boxed	 version	 of	 string 	 that	 is	 defined	 as	 boxed(string) .
Internally,	there	is	really	no	difference	between	 string 	and	 boxed(string) .	If	 swap_boxed 	is	called	on	a
pair	 of	 the	 type	 (T1,	 T2)	 for	 some	 types	 T1	 and	 T2,	 both	 T1	 and	 T2	 are	 required	 to	 be	 boxed.
Otherwise,	a	type-error	is	reported.	For	example,	calling	 swap_boxed 	on	 (0,	1) 	yields	a	type-error	as
the	type	 int 	 is	not	boxed.	One	may	be	attempted	to	form	a	boxed	integer	like	 box(0) ,	but	doing	so
leads	to	a	type-error	as	there	is	no	assumption	made	about	the	size	of	an	integer	value	of	the	type	 int
in	ATS.

When	calling	a	polymorphic	 function,	we	often	omit	passing	static	arguments	explicitly	and	expect
them	to	be	synthesized	by	the	compiler.	However,	there	are	also	occasions,	which	are	not	uncommon,
where	static	arguments	need	to	be	supplied	explicitly	as	either	they	cannot	be	successfully	synthesized
or	what	is	synthesized	is	not	exactly	what	is	expected	by	the	programmer.

It	 is	 also	 possible	 to	 pass	 static	 arguments	 sequentially	 as	 is	 shown	 in	 the	 following	 style	 of
implementation	of	a	polymorphic	function:

//

fun	swap2_boxed{a:type}{b:type}	(xy:	(a,	b)):	(b,	a)	=	(xy.1,	xy.0)

//

val	AB	=	(box("A"),	box("B"))

val	BA1	=	swap2_boxed	(AB)	//	both	static	arguments	to	be	synthesized

val	BA2	=	swap2_boxed{...}	(AB)	//	both	static	arguments	to	be	synthesized

val	BA3	=	swap2_boxed{..}{boxstr}	(AB)	//	1st	static	argument	to	be	synthesized

val	BA4	=	swap2_boxed{boxstr}{..}	(AB)	//	2nd	static	argument	to	be	synthesized

val	BA5	=	swap2_boxed{..}{..}	(AB)	//	both	static	arguments	to	be	synthesized

val	BA6	=	swap2_boxed{boxstr}{boxstr}	(AB)	//	both	static	arguments	are	provided

//

The	special	syntax	 {..} 	indicates	to	the	typechecker	that	the	static	argument	(or	arguments)	involved
in	the	current	application	should	be	synthesized	while	the	special	syntax	 {...} 	means	that	the	rest	of
static	arguments	should	all	be	synthesized.

I	 have	 seen	 two	 kinds	 of	 errors	 involving	 polymorphic	 functions	 that	 are	 extremely	 common	 in
practice.

The	first	kind	is	depicted	in	the	following	example:

fun	swap_boxed{a,b:t@ype}	(xy:	(a,	b)):	(b,	a)	=	(xy.1,	xy.0)

Notice	that	the	sort	for	type	variables	 a 	and	 b 	is	 t@ype 	(instead	of	 type).	While	this	example	can
pass	typechecking,	its	compilation	results	in	a	compile-time	error	that	may	seem	mysterious	to
many	programmers.	The	simple	reason	for	this	error	is	that	the	compiler	cannot	figure	out	the
size	of	 a 	and	 b 	when	trying	to	generate	code	in	C	as	the	sort	 t@ype 	is	for	types	of	unspecified
size.

The	second	kind	is	depicted	in	the	following	example:

fun{a,b:type}	swap_boxed	(xy:	(a,	b)):	(b,	a)	=	(xy.1,	xy.0)

Strictly	speaking,	there	is	really	no	error	in	this	case.	If	defined	as	such,	 swap_boxed 	is	a	function
template	 instead	 of	 a	 polymorphic	 function.	 However,	 such	 a	 function	 template	 is	 severely
restricted	as	it	cannot	be	instantiated	with	types	that	are	not	boxed.	While	this	could	be	intended,	it
is	very	unlikely.

Given	the	potential	confusion,	why	do	we	need	both	function	templates	and	polymorphic	functions?
At	this	stage,	it	is	certainly	plausible	that	we	program	only	with	function	templates	and	make	no	use
of	 polymorphic	 functions.	 However,	 polymorphic	 functions	 simply	 become	 indispensible	 in	 the
presence	 dependent	 types.	 There	 will	 actually	 be	 numerous	 occasions	 where	 we	 encounter
polymorphic	function	templates,	that	is,	templates	for	polymorphic	functions.

Polymorphic	Datatypes

Code	 sharing	 also	 applies	 to	 datatype	 declarations.	 For	 instance,	 a	 commonly	 used	 polymorphic
datatype	 list0 	is	declared	as	follows:

datatype

list0	(a:t@ype)	=

		|	list0_nil	(a)	of	()	|	list0_cons	(a)	of	(a,	list0	a)

//	end	of	[list0]

More	precisely,	 list0 	 is	 a	 type	 constructor.	Given	 a	 type	T,	we	 can	 form	a	 type	 list0(T) 	 for	 lists
consisting	of	elements	of	 the	 type	T.	For	 instance,	 list0(char) 	 is	 for	character	 lists,	 list0(int) 	 for
integer	 lists,	 list0(list0(int)) 	 for	 lists	whose	elements	are	 themselves	 integer	 lists,	etc.	To	 a	 great
extent,	the	need	for	function	templates	or	polymorphic	functions	largely	stems	from	the	availability
of	polymorphic	datatypes.	As	an	example,	a	function	template	 list0_length 	is	implemented	as	follows
for	computing	the	length	of	any	given	list:

fun{a:t@ype}

list0_length	(xs:	list0	a):	int	=

(

		case+	xs	of

		|	list0_cons	(_,	xs)	=>	1	+	list0_length<a>	(xs)	|	list0_nil	()	=>	0

)	(*	end	of	[list0_length]	*)

When	 applying	 list0_length 	 to	 a	 list	 xs,	 we	 can	 in	 general	 write	 list0_length(xs) ,	 expecting	 the
typechecker	 to	 synthesize	 a	 proper	 type	 parameter	 for	 list0_length .	 We	 may	 also	 write
list0_length< T >(xs) 	 if	 the	 elements	 of	 xs	 are	 of	 the	 type	 T.	 The	 latter	 style,	 though	 a	 bit	 more
verbose,	is	likely	to	yield	more	informative	messages	in	case	type-errors	occur.

Another	commonly	used	polymorphic	datatype	 option0 	is	declared	as	follows:

datatype

option0	(a:t@ype)	=

		|	option0_none	(a)	of	()	|	option0_some	(a)	of	a

//	end	of	[option0]

A	typical	use	of	 option0 	is	to	perform	some	kind	of	error-handling.	Suppose	that	we	are	to	implement
a	function	doing	integer	division	and	we	want	to	make	sure	that	the	function	returns	even	if	it	is	called
in	a	case	where	the	divisor	equals	0.	This	can	be	done	as	follows:

fun	divopt

(

		x:	int,	y:	int

)	:	option0	(int)	=

		if	y	!=	0	then	option0_some{int}(x/y)	else	option0_none((*void*))

//	end	of	[divopt]

By	inspecting	what	 divopt 	returns,	we	can	tell	whether	integer	division	has	been	done	normally	or	an
error	 of	 divsion-by-zero	 has	 occurred.	 A	 realistic	 use	 of	 option0 	 is	 shown	 in	 the	 following
implementation	of	 list0_last :

fun{

a:t@ype

}	list0_last

(

		xs:	list0	a

)	:	option0	(a)	=	let

//

fun	loop

		(x:	a,	xs:	list0	a):	a	=

(

		case+	xs	of

		|	list0_nil	()	=>	x	|	list0_cons	(x,	xs)	=>	loop	(x,	xs)

)	(*	end	of	[loop]	*)

//

in

		case+	xs	of

		|	list0_nil	()	=>	option0_none((*void*))

		|	list0_cons	(x,	xs)	=>	option0_some{a}(loop	(x,	xs))

end	//	end	of	[list0_last]

When	 applied	 to	 a	 list,	 list0_last 	 returns	 an	 optional	 value.	 If	 the	 value	 matches	 the	 pattern
option0_none() ,	then	the	list	is	empty.	Otherwise,	the	value	is	formed	by	applying	 option0_some 	to	the
last	element	of	the	given	list.

Example:	Function	Templates	on	Lists

In	 functional	 programming,	 lists	 are	 ubiquitous.	We	 implement	 as	 follows	 some	 commonly	 used
function	templates	on	lists.	It	should	be	noted	that	these	templates	are	all	available	in	some	library	of
ATS,	 where	 they	 may	 be	 implemented	 in	 a	 significantly	 more	 efficient	 manner	 due	 to	 the	 use	 of
certain	programming	features	(such	as	linear	datatypes)	that	have	not	been	covered	so	far.

Please	find	the	entire	code	in	this	section	plus	some	additional	code	for	testing	on-line.

Appending:	 list0_append

Given	two	lists	xs	and	ys	of	the	type	 list0(T) 	for	some	type	T,	 list0_append(xs,	ys) 	returns	a	list	that
is	the	concatenation	of	xs	and	ys:

fun{

a:t@ype

}	list0_append

(

		xs:	list0	a

,	ys:	list0	a

)	:	list0	a	=

(

case+	xs	of

|	list0_cons	(x,	xs)	=>

				list0_cons{a}(x,	list0_append<a>	(xs,	ys))

|	list0_nil	((*void*))	=>	ys

)	(*	end	of	[list0_append]	*)

Clearly,	this	implementation	of	 list0_append 	is	not	tail-recursive.

Reverse-Appending:	 list0_reverse_append

Given	two	lists	xs	and	ys	of	the	type	 list0(T) 	for	some	type	T,	 list0_reverse_append(xs,	ys) 	returns	a
list	that	is	the	concatenation	of	the	reverse	of	xs	and	ys:

fun{

a:t@ype

}	list0_reverse_append

(

		xs:	list0	a,	ys:	list0	a

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_POLYMORPH/listfuns.dats

)	:	list0	a	=

(

case+	xs	of

|	list0_cons	(x,	xs)	=>

				list0_reverse_append<a>	(xs,	list0_cons{a}(x,	ys))

|	list0_nil	()	=>	ys

)	(*	end	of	[list0_reverse_append]	*)

Clearly,	this	implementation	of	 list0_reverse_append 	is	tail-recursive.

Reversing:	 list0_reverse

Given	a	list	xs,	 list0_reverse(xs) 	returns	the	reverse	of	xs:

fun{a:t@ype}

list0_reverse

		(xs:	list0	a):	list0	a	=	list0_reverse_append<a>	(xs,	list0_nil)

//	end	of	[list0_reverse]

Mapping:	 list0_map

Given	 a	 list	 xs	 of	 the	 type	 list0(T1) 	 for	 some	 type	 T1	 and	 a	 closure	 function	 f	 of	 the	 type	 T1	 -
<cloref1>	T2	for	some	type	T2,	 list0_map(xs,	f) 	returns	a	list	ys	of	the	type	 list0(T2) :

fun

{a:t@ype}

{b:t@ype}

list0_map

(

		xs:	list0	a,	f:	a	-<cloref1>	b

)	:	list0	b	=

(

case+	xs	of

|	list0_cons	(x,	xs)	=>

				list0_cons{b}(f	x,	list0_map<a>	(xs,	f))

|	list0_nil	((*void*))	=>	list0_nil	()

)	(*	end	of	[list0_map]	*)

The	length	of	ys	equals	that	of	xs	and	each	element	y	in	ys	equals	f(x),	where	x	is	the	corresponding
element	in	xs.	Clearly,	this	implementation	of	 list0_map 	is	not	tail-recursive.

Left-Folding:	 list0_foldleft

Given	xs,	ini	and	f,	 list0_foldleft(ini,	xs,	f) 	computes	the	value	of	the	expression	f(...	f(f(ini,	xs[0]),
xs[1])	 ...,	xs[n-1]),	where	n	is	 the	length	of	xs	and	xs[i]	refers	to	element	i	 in	xs	for	each	i	<	n.	The
following	implementation	of	 list0_foldleft 	is	tail-recursive:

fun

{a:t@ype}

{b:t@ype}

list0_foldleft

(

		ini:	a,	xs:	list0	(b),	f:	(a,	b)	->	a

)	:	a	=

(

		case+	xs	of

		|	list0_cons

						(x,	xs)	=>	list0_foldleft<a>	(f	(ini,	x),	xs,	f)

		|	list0_nil	((*void*))	=>	ini

)

Right-Folding:	 list0_foldright

Given	xs,	res	and	f,	 list0_foldright(xs,	res,	f) 	computes	the	value	of	the	expression	f(xs[0],	f(xs[1],
f(...	f(xs[n-1],	res)	...))),	where	n	is	the	length	of	xs	and	xs[i]	refers	to	element	i	in	xs	for	each	i	<	n.
The	following	implementation	of	 list0_foldright 	is	not	tail-recursive:

fun

{a:t@ype}

{b:t@ype}

list0_foldright

(

		xs:	list0	(a),	res:	b,	f:	(a,	b)	->	b

)	:	b	=

(

		case+	xs	of

		|	list0_cons

						(x,	xs)	=>	f	(x,	list0_foldright<a>	(xs,	res,	f))

		|	list0_nil	((*void*))	=>	res

)

Zipping:	 list0_zip

Given	two	lists	xs	and	ys	of	the	types	 list0(T1) 	and	 list0(T2) 	for	some	types	T1	and	T2,	respectively,
list0_zip(xs,	ys) 	returns	a	list	zs	of	the	type	 list0(@(T1,	T2)) :

fun{

a,b:t@ype

}	list0_zip

(

		xs:	list0	a

,	ys:	list0	b

)	:	list0	@(a,	b)	=	let

		typedef	ab	=	@(a,	b)

in

//

case+	(xs,	ys)	of

|	(list0_cons	(x,	xs),

			list0_cons	(y,	ys))	=>

		(

				list0_cons{ab}((x,	y),	list0_zip<a,b>	(xs,	ys))

)

|	(_,	_)	=>	list0_nil	()

//

end	//	end	of	[list0_zip]

The	length	of	zs	is	the	minimum	of	the	lengths	of	xs	and	ys	and	each	element	z	in	zs	equals	@(x,	y),
where	x	and	y	are	the	corresponding	elements	in	xs	and	ys,	respectively.	Clearly,	this	implementation
of	 list0_zip 	is	not	tail-recursive.

Zipping	with:	 list0_zipwith

Given	two	lists	xs	and	ys	of	the	types	 list0(T1) 	and	 list0(T2) 	for	some	types	T1	and	T2,	respectively,
and	a	closure	function	f	of	the	type	(T1,	T2)	-<cloref1>	T3	for	some	type	T3,	 list0_zipwith(xs,	 ys,
f) 	returns	a	list	zs	of	the	type	 list0(T3) :

fun

{a,b:t@ype}

{c:t@ype}

list0_zipwith

(

		xs:	list0	a

,	ys:	list0	b

,	f:	(a,	b)	-<cloref1>	c

)	:	list0	c	=

(

case+	(xs,	ys)	of

|	(list0_cons	(x,	xs),

			list0_cons	(y,	ys))	=>

		(

				list0_cons{c}(f	(x,	y),	list0_zipwith<a,b><c>	(xs,	ys,	f))

)

|	(_,	_)	=>	list0_nil	()

)	(*	end	of	[list0_zipwith]	*)

The	length	of	zs	is	the	minimum	of	the	lengths	of	xs	and	ys	and	each	element	z	in	zs	is	f(x,	y),	where
x	 and	 y	 are	 the	 corresponding	 elements	 in	 xs	 and	 ys,	 respectively.	Clearly,	 this	 implementation	 of
list0_zipwith 	is	not	tail-recursive.	Note	that	 list0_zipwith 	behaves	exactly	like	 list0_zip 	 if	 its	third
argument	 f 	is	replaced	with	 lam	(x,	y)	=>	@(x,	y) .	This	function	template	is	also	named	 list0_map2
for	the	obvious	reason.

Example:	Mergesort	on	Lists

Mergesort	is	a	simple	sorting	algorithm	that	is	guaranteed	to	be	log-linear.	It	is	stable	in	the	sense	that
the	 order	 of	 two	 equal	 elements	 always	 stay	 the	 same	 after	 sorting.	 I	 give	 as	 follows	 a	 typical
functional	style	of	implementation	of	mergesort	on	lists.

First,	let	us	introduce	abbreviations	for	the	list	constructors	 list0_nil 	and	 list0_cons :

#define	::	list0_cons	//	writing	[::]	for	list0_cons

#define	cons0	list0_cons	//	writing	[cons0]	for	list0_cons

#define	nil0	list0_nil	//	writing	[nil0]	for	list0_nil

Note	that	the	operator	 :: 	is	already	given	the	infix	status.	For	instance,	the	list	consisting	of	the	first	5
natural	numbers	can	be	constructed	as	follows:

cons0	(0,	cons0	(1,	2	::	3	::	4	::	nil0	()))

In	practice,	there	is	of	course	no	point	in	mixing	 cons0 	with	 :: .

We	next	implement	a	function	template	 merge 	to	merge	two	given	ordered	lists	into	a	single	ordered
one:

typedef

lte	(a:t@ype)	=	(a,	a)	->	bool

fun{

a:t@ype

}	merge	(

		xs:	list0	a,	ys:	list0	a,	lte:	lte	a

)	:	list0	a	=

(

		case+	xs	of

		|	cons0	(x,	xs1)	=>	(

				case+	ys	of

				|	cons0	(y,	ys1)	=>

								if	x	\lte	y	then

										cons0{a}(x,	merge<a>	(xs1,	ys,	lte))

								else

										cons0{a}(y,	merge<a>	(xs,	ys1,	lte))

								//	end	of	[if]

				|	nil0	()	=>	xs

)	//	end	of	[cons0]

		|	nil0	()	=>	ys

)	(*	end	of	[merge]	*)

For	instance,	suppose	that	 the	two	given	lists	are	(1,	3,	4,	8)	and	(2,	5,	6,	7,	9),	and	the	comparison
function	(the	third	argument	of	 merge)	is	the	standard	less-than-or-equal-to	function	on	integers.	Then
the	 list	 returned	 by	 merge 	 is	 (1,	 2,	 3,	 4,	 5,	 6,	 7,	 8,	 9).	 The	 syntax	 \lte 	 means	 that	 the	 particular
occurrence	 of	 lte 	 following	 the	 backslash	 symbol	 (\)	 is	 given	 the	 infix	 status,	 and	 thus	 the
expression	 x	\lte	y 	means	the	same	as	 lte(x,	y) .

The	following	function	template	 mergesort 	implements	the	standard	mergesort	algorithm:

fun{

a:t@ype

}	mergesort

(

		xs:	list0	a,	lte:	lte	a

)	:	list0	a	=	let

//

val	n	=	list0_length<a>	(xs)

//

fun	msort

(

		xs:	list0	a,	n:	int,	lte:	lte	a

)	:	list0	a	=

		if	n	>=	2	then	split	(xs,	n,	lte,	n/2,	nil0)	else	xs

//

and	split

(

		xs:	list0	a,	n:	int,	lte:	lte	a,	i:	int,	xsf:	list0	a

)	:	list0	a	=

		if	i	>	0	then	let

				val-cons0	(x,	xs)	=	xs

		in

				split	(xs,	n,	lte,	i-1,	cons0{a}(x,	xsf))

		end	else	let

				val	xsf	=	list0_reverse<a>	(xsf)	//	make	sorting	stable!

				val	xsf	=	msort	(xsf,	n/2,	lte)	and	xs	=	msort	(xs,	n-n/2,	lte)

		in

				merge<a>	(xsf,	xs,	lte)

		end	//	end	of	[if]

//

in

		msort	(xs,	n,	lte)

end	//	end	of	[mergesort]

Suppose	we	want	to	sort	the	list	(8,	3,	4,	1,	2,	7,	6,	5,	9);	we	first	divide	it	into	two	lists:	(8,	3,	4,	1)	and
(2,	7,	6,	5,	9);	by	performing	mergesort	on	each	of	them,	we	obtain	two	ordered	lists:	(1,	3,	4,	8)	and
(2,	5,	6,	7,	9);	by	merging	these	two	ordered	list,	we	obtain	the	ordered	list	(1,	2,	3,	4,	5,	6,	7,	8,	9),
which	is	a	permutation	of	the	originally	given	list	(8,	3,	4,	1,	2,	7,	6,	5,	9).

Note	that	the	function	template	 merge 	is	not	tail-recursive	as	the	call	to	 merge 	in	its	body	is	not	a	tail-
call.	This	can	be	a	serious	problem	in	practice:	It	is	almost	certain	that	a	stack	overflow	is	to	occur	if
the	above	implementation	of	mergesort	 is	employed	to	sort	a	 list	 that	 is	very	 long	(e.g.,	containing
1,000,000	elements	or	more).	I	will	later	give	a	tail-recursive	implementation	of	the	 merge 	function	in
ATS	that	makes	use	of	linear	types.

Please	find	the	entire	code	in	this	section	plus	some	additional	code	for	testing	on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_POLYMORPH/mergesort.dats

II.	Support	for	Practical	Programming
Table	of	Contents
6.	Effectful	Programming	Features
7.	Modularity
8.	Interaction	with	C

Chapter	6.	Effectful	Programming	Features
Effectful	programming	features	are	those	that	can	generate	effects	at	run-time.	But	what	is	really	an
effect?	The	answer	to	this	question	is	rather	complex	as	it	depends	on	the	model	of	evaluation.	I	will
gradually	 introduce	 various	 kinds	 of	 effects	 in	 this	 book.	 In	 sequential	 programming,	 that	 is,
constructing	 programs	 to	 be	 evaluated	 sequentially	 (in	 contrast	 to	 concurrently),	 an	 expression	 is
effectless	if	there	exists	a	value	such	that	the	expression	and	the	value	cannot	be	distinguished	as	far	as
evaluation	 is	concerned.	For	 instance,	 the	expression	 1+2 	 is	 effectless	as	 it	 cannot	be	distinguished
from	 the	value	 3 .	An	 effectless	 expression	 is	 also	 said	 to	 be	pure.	On	 the	 other	 hand,	 an	 effectful
expression	 is	 one	 that	 can	 be	 distinguished	 from	 any	 given	 values.	 For	 instance,	 the	 expression
print("Hello") 	 is	 effectful	 as	 its	 evaluation	 results	 in	 an	 observable	 behavior	 that	 distinguishes	 the
expression	from	any	values.	In	this	case,	 print("Hello") 	is	said	to	certain	I/O	effect.	If	the	evaluation
of	an	expression	never	 terminates,	 then	 the	expression	 is	also	effectul.	For	 instance,	 let	us	define	a
function	 loop 	as	follows:

fun	loop	():	void	=	loop	()

Then	the	expression	 loop() 	can	be	distinguished	from	any	values	in	the	following	context:

let	val	_	=	[]	in	print	("Terminated")	end

If	the	hole	 [] 	 in	the	context	is	replaced	with	 loop() ,	 then	the	evaluation	of	the	resulting	expression
continues	forever.	 If	 the	hole	 [] 	 is	 replaced	with	 any	value,	 then	 the	 evaluation	 leads	 to	 the	 string
"Terminated"	being	printed	out.	The	expression	 loop 	is	said	to	contain	non-termination	effect.

I	will	 cover	 programming	 features	 related	 to	 exceptional	 control-flow,	 persistent	memory	 storage
and	simple	I/O	in	this	chapter,	which	are	all	of	common	use	in	practical	programming.

The	code	employed	for	illustration	in	this	chapter	plus	some	additional	code	for	testing	is	available
on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_EFFECTFUL/

Exceptions

The	exception	mechanism	provides	an	efficient	means	for	reporting	a	special	condition	encountered
during	program	evaluation.	Often	such	a	special	condition	indicates	an	error,	but	it	is	not	uncommon
to	employ	exceptions	to	address	issues	that	are	not	related	to	errors.

The	 type	 exn 	 is	predefined	 in	ATS.	One	may	 think	of	 exn 	 as	an	extensible	datatype	 for	which	new
constructors	 can	 always	 be	 declared.	 For	 instance,	 two	 exception	 constructors	 are	 declared	 as
follows:

exception	FatalError0	of	()

exception	FatalError1	of	(string)

The	constructor	 FatalError0 	is	nullary	while	the	constructor	 FatalError1 	 is	unary.	Exception	values,
that	is,	values	of	the	type	 exn 	can	be	formed	by	applying	exception	constructors	to	proper	arguments.
For	instance,	 FatalError0() 	and	 FatalError1("division-by-zero") 	are	 two	exception	values	 (or	simply
exceptions).	In	the	following	program,	a	function	for	integer	division	is	implemented:

exception	DivisionByZero	of	()

fun	divexn	(x:	int,	y:	int):	int	=

		if	y	!=	0	then	then	x	/	y	else	$raise	DivisionByZero()

//	end	of	[divexn]

When	 the	 function	 call	 divexn(1,	 0) 	 is	 evaluated,	 the	 exception	 DivisionByZero() 	 is	 raised.	 The
keyword	 $raise 	in	ATS	is	solely	for	raising	exceptions.

A	raise-expression	is	of	the	form	($raise 	exp)	for	some	expression	exp.	Clearly,	if	the	evaluation	of
exp	 returns	 a	value,	 then	 the	 evaluation	of	 ($raise 	 exp)	 leads	 to	 a	 raised	exception.	Therefore,	 the
evaluation	of	a	raise-expression	can	never	return	a	value,	and	this	justifies	that	a	raise-expression	can
be	given	any	type.

A	 raised	 exception	 can	 be	 captured.	 If	 it	 is	 not	 captured,	 the	 raised	 exception	 aborts	 the	 program
evaluation	that	issued	it	in	the	first	place.	In	ATS,	a	try-expression	(or	try-with-expression)	is	of	the
form	(try 	exp	 with 	clseq),	where	 try 	 is	a	keyword,	exp	is	an	expression,	 with 	 is	also	a	keyword,
and	clseq	is	a	sequence	of	matching	clauses.	When	evaluating	such	a	try-expression,	we	first	evaluate
exp.	If	the	evaluation	of	exp	leads	to	a	value,	then	the	value	is	also	the	value	of	the	try-expression.	If
the	evaluation	of	exp	leads	to	a	raised	exception,	then	we	match	the	exception	against	the	guards	of	the
matching	 clauses	 in	 clseq.	 If	 there	 is	 a	 match,	 the	 raised	 exception	 is	 caught	 and	 we	 continue	 to

evaluate	the	body	of	the	first	clause	whose	guard	is	matched.	If	there	is	no	match,	the	raised	exception
is	uncaught.	In	a	try-expression,	the	with-part	is	often	referred	to	as	an	exception-handler.

Let	 us	 now	 see	 an	 example	 that	 involves	 raising	 and	 capturing	 an	 exception.	 In	 the	 following
program,	three	functions	are	defined	to	compute	the	product	of	the	integers	in	a	given	list:

fun	listprod1

(

		xs:	list0	(int)

):	int	=

(

		case+	xs	of

		|	list0_nil	()	=>	1

		|	list0_cons	(x,	xs)	=>	x	*	listprod1	(xs)

)	(*	end	of	[listprod1]	*)

fun	listprod2

(

		xs:	list0	(int)

)	:	int	=

(

		case+	xs	of

		|	list0_nil	()	=>	1

		|	list0_cons	(x,	xs)	=>

						if	x	=	0	then	0	else	x	*	listprod2	(xs)

				//	end	of	[list0_cons]

)	(*	end	of	[listprod2]	*)

fun	listprod3

(

		xs:	list0	(int)

)	:	int	=	let

		exception	ZERO	of	()

		fun	aux	(xs:	list0	(int)):	int	=

				case+	xs	of

				|	list0_cons	(x,	xs)	=>

								if	x	=	0	then	$raise	ZERO()	else	x	*	aux	(xs)

				|	list0_nil	()	=>	1

		//	end	of	[aux]

in

		try	aux	(xs)	with	~ZERO	()	=>	0

end	//	end	of	[listprod3]

While	these	functions	can	all	be	defined	tail-recursively,	they	are	not	so	as	to	make	a	point	that	should
be	clear	shortly.	Undoubtedly,	we	all	know	the	following	simple	fact:

If	the	integer	0	occurs	in	a	given	list,	then	the	product	of	the	integers	in	the	list	is	0	regardless
what	other	integers	are.

The	function	 listprod1 	is	defined	in	a	standard	manner,	and	it	does	not	make	any	use	of	the	stated	fact.
The	function	 listprod2 	is	defined	in	a	manner	that	makes	only	partial	use	of	the	stated	fact.	To	see	the
reason,	let	us	evaluate	a	call	to	 listprod2 	on	 [1,	2,	3,	0,	4,	5,	6] ,	which	denotes	a	list	consisting	of
the	 7	mentioned	 integers.	The	 evaluation	 of	 this	 call	 eventually	 leads	 to	 the	 evaluation	 of	 1*(2*(3*
(listprod([0,4,5,6])))) ,	which	 then	 leads	 to	 1*(2*(3*0)) ,	 and	 then	 to	 1*(2*0) ,	 and	 then	 to	 1*0 ,	 and
finally	 to	 0 .	However,	what	we	 really	want	 is	 for	 the	 evaluation	 to	 return	 0	 immediately	 once	 the
integer	 0	 is	 encountered	 in	 the	 list,	 and	 this	 is	 accomplished	 by	 the	 function	 listprod3 .	 When
evaluating	a	call	 to	 listprod3 	on	 [1,	 2,	 3,	 0,	 4,	 5,	 6] ,	we	 eventually	 reach	 the	 evaluation	 of	 the
following	expression:

try	1*(2*(3*(aux([0,4,5,6]))))	with	~ZERO()	=>	0

Evaluating	 aux([0,4,5,6]) 	 leads	 to	 the	 exception	 ZERO() 	 being	 raised,	 and	 this	 raised	 exception	 is
caught	 and	 0 	 is	 returned	 as	 the	 value	 of	 the	 call	 to	 listprod3 .	 Note	 that	 the	 pattern	 guard	 of	 the
matching	clause	following	the	keyword	 with 	is	 ~ZERO() .	I	will	explain	the	need	for	the	tilde	symbol	 ~
elsewhere.	For	now,	 it	 suffices	 to	say	 that	 exn 	 is	 a	 linear	 type	and	each	exception	value	 is	 a	 linear
value,	which	must	be	consumed	or	re-raised.	The	tilde	symbol	 ~ 	indicates	that	the	value	matching	the
pattern	following	 ~ 	is	consumed	(and	the	memory	for	holding	the	value	is	freed).

Exceptions	are	not	a	programming	feature	that	is	easy	to	master,	and	misusing	exceptions	is	abundant
in	practice.	So	please	be	patient	when	learning	the	feature	and	be	cautious	when	using	it.

Example:	Testing	for	Braun	Trees

Braun	trees	are	special	binary	trees	that	can	be	defined	inductively	as	follows:

If	a	binary	tree	is	empty,	then	it	is	a	Braun	tree.

If	both	children	of	a	binary	tree	are	Braun	trees	and	the	size	of	the	left	child	minus	the	size	of	the
right	child	equals	0	or	1,	then	the	binary	tree	is	a	Braun	tree.

Given	a	natural	number	n,	there	is	exactly	one	Braun	tree	of	size	n.	It	is	straightforward	to	prove	that
Braun	trees	are	balanced.

A	polymorphic	datatype	is	declared	as	follows	for	representing	binary	trees:

datatype	tree	(a:t@ype)	=

		|	tree_nil	of	((*void*))

		|	tree_cons	of	(a,	tree(a)(*left*),	tree(a)(*right*))

//	end	of	[tree]	//	end	of	[datatype]

The	following	defined	function	 brauntest0 	tests	whether	a	given	binary	tree	is	a	Braun	tree:

fun{

a:t@ype

}	size	(t:	tree	a):	int	=	case+	t	of

		|	tree_nil	()	=>	0

		|	tree_cons	(_,	tl,	tr)	=>	1	+	size(tl)	+	size(tr)

//	end	of	[size]

fun{

a:t@ype

}	brauntest0

		(t:	tree	a):	bool	=

(

case+	t	of

|	tree_nil	()	=>	true

|	tree_cons	(_,	tl,	tr)	=>	let

				val	cond1	=	brauntest0(tl)	andalso	brauntest0(tr)

		in

				if	cond1	then	let

						val	df	=	size(tl)	-	size(tr)	in	(df	=	0)	orelse	(df	=	1)

				end	else	false

		end	//	end	of	[tree_cons]

)	(*	end	of	[brauntest0]	*)

The	implementation	of	 brauntest0 	follows	the	definition	of	Braun	trees	closely.	If	applied	to	binary
trees	 of	 size	 n,	 the	 time-complexity	 of	 the	 function	 size 	 is	 O(n)	 and	 the	 time-complexity	 of	 the
function	 brauntest0 	is	O(n(log(n))).

In	the	following	program,	the	defined	function	 brauntest1 	also	tests	whether	a	given	binary	tree	is	a
Braun	tree:

fun{

a:t@ype

}	brauntest1

		(t:	tree	a):	bool	=	let

		exception	Negative	of	()

		fun	aux	(t:	tree	a):	int	=

		(

				case+	t	of

				|	tree_nil	()	=>	0

				|	tree_cons	(_,	tl,	tr)	=>	let

								val	szl	=	aux	(tl)	and	szr	=	aux	(tr)

								val	df	=	szl	-	szr

						in

								if	df	=	0	orelse	df	=	1	then	1+szl+szr	else	$raise	Negative()

						end	//	end	of	[tree_cons]

)	(*	end	of	[aux]	*)

in

		try	let

				val	_	=	aux	(t)

		in

				true	//	[t]	is	a	Braun	tree

		end	with

				~Negative()	=>	false	//	[t]	is	not	a	Braun	tree

		//	end	of	[try]

end	//	end	of	[brauntest1]

Clearly,	a	binary	tree	cannot	be	a	Braun	tree	if	one	of	its	subtrees,	proper	or	improper,	is	not	a	Braun
tree.	The	auxiliary	function	 aux 	is	defined	to	return	the	size	of	a	binary	tree	if	the	tree	is	a	Braun	tree
or	raise	an	exception	otherwise.	When	the	evaluation	of	the	try-expression	in	the	body	of	 brauntest1
starts,	the	call	to	 aux 	on	a	binary	tree	t	is	first	evaluated.	If	the	evaluation	of	this	call	returns,	then	t	is
a	Braun	tree	and	the	boolean	value	 true 	is	returned	as	the	value	of	the	try-expression.	Otherwise,	the
exception	 Negative() 	is	raised	and	then	caught,	and	the	boolean	value	 false 	is	returned	as	the	value	of
the	try-expression.	The	time	complexity	of	 brauntest1 	is	the	same	as	that	of	 aux ,	which	is	O(n).

The	use	of	the	exception	mechanism	in	the	implementation	of	 brauntest1 	is	a	convincing	one	because

the	range	between	the	point	where	an	exception	is	raised	and	the	point	where	the	raised	exception	is
captured	can	span	many	function	calls.	If	this	range	is	short	(e.g.,	spanning	only	one	function	call)	in	a
case,	 then	the	programmer	should	probably	investigate	whether	 it	 is	a	sensible	use	of	 the	exception
mechanism.	For	instance,	the	use	of	exception	in	the	following	example	may	seem	interesting	but	it
actually	leads	to	very	inefficient	code:

fun{

a:t@ype

}	list0_length

		(xs:	list0	(a)):	int	=

		try	1	+	list0_length	(xs.tail())	with	~ListSubscriptExn()	=>	0

//	end	of	[list0_length]

Therefore,	making	use	of	exceptions	in	this	style	should	be	avoided.

Please	find	the	entirety	of	the	code	in	this	section	plus	some	additional	code	for	testing	on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_EFFECTFUL/brauntest.dats

References

A	 reference	 is	 just	 a	 singleton	 array,	 that	 is,	 an	 array	 containing	 one	 element.	 Given	 a	 type	 T,	 a
reference	for	storing	a	value	of	 the	type	T	is	given	the	type	ref(T).	The	following	simple	program
makes	use	of	all	the	essential	functionalities	on	references:

val	intr	=	ref<int>	(0)	//	create	a	ref	and	init.	it	with	0

val	()	=	!intr	:=	!intr	+	1	//	increase	the	integer	at	[intr]	by	1

The	 first	 line	 creates	 a	 reference	 for	 storing	 an	 integer	 and	 initializes	 it	with	 the	 value	 0	 and	 then
names	it	 intr .	Note	that	this	style	of	reference	creation	cannot	be	separated	from	its	initialization.	The
second	line	updates	the	reference	 intr 	with	its	current	value	plus	1.	In	general,	given	a	reference	r	of
type	ref(T)	for	some	T,	the	expression	!r	means	to	fetch	the	value	stored	at	r,	which	is	of	the	type	T.
However,	!r	can	also	be	used	as	a	left-value.	For	instance,	the	assignment	(!r	:=	exp)	means	to	evaluate
exp	 into	 a	 value	 and	 then	 store	 the	 value	 into	 r.	 Therefore,	 the	 value	 stored	 in	 intr 	 is	 1	 after	 the
second	line	in	the	above	program	is	evaluated.

Various	functions	and	function	templates	on	references	are	declared	in	the	file	reference.sats,	which
is	 automatically	 loaded	 by	 atsopt.	 In	 particular,	 it	 is	 also	 possible	 to	 read	 from	 and	 write	 to	 a
reference	 by	 using	 the	 function	 templates	 ref_get_elt 	 and	 ref_set_elt 	 of	 the	 following	 interfaces,
respectively:

fun{a:t@ype}	ref_get_elt	(r:	ref	a):	a	//	!r

fun{a:t@ype}	ref_set_elt	(r:	ref	a,	x:	a):	void	//	!r	:=	x

References	are	often	misused	 in	practice,	especially,	by	beginners	of	 functional	programming	who
had	 some	 previous	 exposure	 to	 imperative	 programming	 languages	 such	 C	 and	 Java.	 Such
programmers	 often	 think	 that	 they	 can	 just	 "translate"	 their	 programs	 in	C	 or	 Java	 into	 functional
programs.	For	example,	the	following	defined	function	 sumup 	is	such	an	example,	which	sums	up	all
the	integers	between	1	and	a	given	integer,	inclusive:

fun	sumup

		(n:	int):	int	=	let

		val	i	=	ref<int>	(1)

		val	res	=	ref<int>	(0)

		fun	loop	():	void	=

				if	!i	<=	n	then	(!res	:=	!res	+	!i;	!i	:=	!i	+	1;	loop	())

		//	end	of	[loop]

in

		loop	();	!res

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-Postiats/prelude/SATS/reference.sats

end	//	end	of	[sumup]

This	is	a	correct	but	poor	implementation,	and	its	style,	though	not	the	worst	of	its	kind,	is	deplorable.
As	references	are	allocated	in	heap,	reading	from	or	writing	to	a	reference	can	be	much	more	time-
consuming	than	reading	from	or	writing	to	a	register.	So,	this	implementation	of	 sumup 	is	unlikely	to
be	 time-efficient.	Every	call	 to	 sumup 	 creates	 two	 references	 in	heap	and	 leaves	 them	 there	when	 it
returns,	 and	 the	 memory	 allocated	 for	 such	 references	 can	 only	 be	 reclaimed	 through	 garbage
collection	 (GC).	 So,	 this	 implementation	 of	 sumup 	 is	 not	 memory-efficient.	 More	 importantly,	 a
program	making	heavy	use	of	references	is	often	difficult	to	reason	about.

I	 consider	 references	 a	 dangerous	 feature	 in	 functional	 programming.	 If	 you	 want	 to	 run	 your
program	without	GC,	please	do	not	create	references	in	the	body	of	a	function	(besides	many	other
restrictions).	 If	you	 find	 that	you	are	 in	need	of	 references	 to	 "translate"	 imperative	programs	 into
functional	ones,	then	it	is	most	likely	that	you	are	lost	and	you	have	not	learned	well	to	program	in	a
functional	style	yet.

Example:	A	Counter	Implementation

Let	 us	 see	 as	 follows	 the	 implementation	 of	 a	 counter-like	 object	 in	 the	 style	 of	 object-oriented
programming	(OOP).	The	type	 counter 	for	counters	is	defined	as	follows:

typedef

counter	=	'{

		get=	()	-<cloref1>	int

,	inc=	()	-<cloref1>	void

,	reset=	()	-<cloref1>	void

}	//	end	of	[counter]

The	 three	 fields	 of	 counter 	 are	 closure	 functions	 that	 correspond	 to	 methods	 associated	 with	 an
object:	 getting	 the	 count	 of	 the	 counter,	 increasing	 the	 count	 of	 the	 counter	 by	 1	 and	 resetting	 the
count	of	the	counter	to	0.	The	following	defined	function	 newCounter 	is	for	creating	a	counter	object
(represented	as	a	boxed	record	of	closure	functions):

fun	newCounter

(

//	argumentless

)	:	counter	=	let

		val	count	=	ref<int>	(0)

in	'{

		get=	lam	()	=>	!count

,	inc=	lam	()	=>	!count	:=	!count	+	1

,	reset=	lam	()	=>	!count	:=	0

}	end	//	end	of	[newCounter]

The	state	of	each	created	counter	object	is	stored	in	a	reference,	which	can	only	be	accessed	by	the
three	 closure	 functions	 in	 the	 record	 that	 represents	 the	 object.	 This	 is	 often	 referred	 to	 as	 state
encapsulation	in	OOP.

I	myself	 think	 that	 the	above	counter	 implementation	 is	of	 rather	a	poor	style.	 It	 is	also	possible	 to
protect	the	integrity	of	a	state	by	simply	making	it	abstract.	I	will	present	elsewhere	another	counter
implementation	based	on	a	linear	abstract	type	(that	is,	abstract	viewtype	in	ATS),	where	counters	can
be	created	and	then	safely	freed.

Arrays

I	mentioned	earlier	that	a	reference	is	just	an	array	of	size	1.	I	would	now	like	to	state	that	an	array	of
size	n	is	just	n	references	allocated	consecutively.	These	references	can	also	be	called	cells,	and	they
are	numbered	from	0	until	n-1,	inclusive.

Given	an	array	of	size	n,	an	integer	is	a	valid	index	for	this	array	if	it	is	a	natural	number	strictly	less
than	n.	Otherwise,	the	integer	is	out	of	the	bounds	of	the	array.	For	an	array	named	A,	the	expression
A[i]	means	 to	 fetch	 the	 content	 of	 the	 cell	 in	A	 that	 is	 numbered	 i	 if	 i	 is	 a	 valid	 index	 for	A.	The
expression	A[i]	can	also	be	used	as	a	left	value.	For	instance,	the	assignment	(A[i]	:=	exp)	means	to
evaluate	exp	to	a	value	and	then	store	the	value	into	the	cell	in	A	that	is	numbered	i	if	i	is	a	valid	index.

What	happens	if	the	index	i	in	A[i]	is	invalid,	that	is,	it	is	out	of	the	bounds	of	the	array	A?	In	this	case,
A[i]	is	referred	to	as	out-of-bounds	array	subscription	and	evaluating	A[i]	leads	to	a	raised	exception
where	the	exception	is	 ArraySubscriptExn() .	One	simple	and	reliable	way	to	tell	whether	an	integer	is	a
valid	index	for	a	given	array	is	to	compare	it	with	the	size	of	the	array	at	run-time.	Given	a	type	T,	the
type	 arrszref(T) 	is	for	an	array	paired	with	its	size	in	which	elements	of	the	type	T	are	stored.	I	will
loosely	refer	to	values	of	the	type	 arrszref(T) 	as	arrays	from	now	on.	In	case	there	is	a	clear	need	to
avoid	potential	confusion,	I	may	also	refer	to	them	as	array0-values.

Various	 functions	 and	 function	 templates	 on	 array0-values	 are	 declared	 in	 the	 file	 arrayref.sats,
which	is	automatically	loaded	by	atsopt.	For	instance,	three	function	templates	and	one	polymorphic
function	on	arrays	are	depicted	by	the	following	interfaces:

//

fun{a:t@ype}	//	template

arrszref_make_elt

		(asz:	size_t,	x:	a):	arrszref	a	//	array	creation

//

//	polymorphic	fun:

//

fun	arrszref_get_size

		{a:t@ype}	(A:	arrszref	a):	size_t	//	size	of	an	array

//

fun{a:t@ype}	//	template

arrszref_get_elt_at	(A:	arrszref	a,	i:	size_t):	a	//	A[i]

//

fun{a:t@ype}	//	template

arrszref_set_elt_at	(A:	arrszref	a,	i:	size_t,	x:	a):	void	//	A[i]	:=	x

//

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-Postiats/prelude/SATS/arrayref.sats

As	 for	 programming	 with	 arrays	 that	 carry	 no	 size	 information,	 it	 is	 a	 topic	 to	 be	 covered	 after
dependent	types	are	introduced.

Like	in	C,	there	are	many	types	of	integer	values	in	ATS.	The	type	 size_t 	is	essentially	for	unsigned
long	 integers.	 The	 functions	 for	 converting	 between	 the	 type	 int 	 and	 the	 type	 size_t 	 are
g0int2uint_int_size 	and	 g0uint2int_size_int .	Given	a	type	T	and	two	values	 asz 	and	 init 	of	the	types
size_t 	and	T,	respectively,	 arrszref_make_elt<T>	(asz,	init) 	returns	an	array	of	the	type	 arrszref(T)
such	that	the	size	of	the	array	is	 asz 	and	each	cell	in	the	array	is	initialized	with	the	value	 init .	Given
an	array	A	of	the	type	 arrszref(T) 	for	some	T,	 arrszref_get_size(A) 	returns	the	size	of	A,	which	is	of
the	type	 size_t .	For	convenience,	 arrszref_get_size(A) 	can	be	written	as	 A.size() .	As	for	array	access
and	update,	the	functions	 arrszref_get_elt_at 	and	 arrszref_set_elt_at 	can	be	called.	For	convenience,
the	bracket	notation	can	be	used	to	call	these	functions.

In	the	following	program,	the	function	template	 insertion_sort 	implements	the	standard	insertion	sort
on	arrays:

fun{

a:t@ype

}	insertion_sort

(

		A:	arrszref	(a)

,	cmp:	(a,	a)	->	int

)	:	void	=	let

		val	n	=	g0uint2int_size_int(A.size())

		fun	ins	(x:	a,	i:	int):<cloref1>	void	=

				if	i	>=	0	then

				(

						if	cmp	(x,	A[i])	<	0

								then	(A[i+1]	:=	A[i];	ins	(x,	i-1))	else	A[i+1]	:=	x

						//	end	of	[if]

)	else	A[0]	:=	x	//	end	of	[if]

		//	end	of	[ins]

		fun	loop	(i:	int):<cloref1>	void	=

				if	i	<	n	then	(ins	(A[i],	i-1);	loop	(i+1))	else	()

		//	end	of	[loop]

in

		loop	(1)

end	//	end	of	[insertion_sort]

The	comparison	function	 cmp 	should	return	1,	-1,	and	0	if	its	first	argument	is	greater	than,	less	than
and	equal	to	its	second	one,	respectively.

Note	that	the	entire	code	in	this	section	plus	some	additional	code	for	testing	is	available	on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_EFFECTFUL/insort.dats

Example:	Ordering	Permutations

Given	a	natural	number	n,	we	want	 to	print	out	all	 the	permutations	consisting	of	 integers	 ranging
from	1	to	n,	inclusive.	In	addition,	we	want	to	print	them	out	according	to	the	lexicographic	ordering
on	integer	sequences.	For	instance,	we	want	the	following	output	to	be	generated	when	n	is	3:

1,	2,	3

1,	3,	2

2,	1,	3

2,	3,	1

3,	1,	2

3,	2,	1

Let	us	first	define	a	function	as	follows	for	printing	out	an	array	of	integers:

fun	print_intarray

		(A:	arrszref	(int)):	void	=	let

		val	asz	=	g0uint2int_size_int(A.size())

//

//	The	integers	are	to	be	separated	by	the	string	[sep]

//

		fun	loop	(i:	int,	sep:	string):	void	=

				if	i	<	asz	then

						(if	i	>	0	then	print	sep;	print	A[i];	loop	(i+1,	sep))

				//	end	of	[if]

in

		loop	(0,	",	")

end	//	end	of	[print_intarray]

We	next	implement	two	functions	 lrotate 	and	 rrotate 	for	rearranging	the	elements	in	a	given	integer
array:

fun	lrotate	(

		A:	arrszref	int,	i:	int,	j:	int

)	:	void	=	let

		fun	lshift	(

				A:	arrszref	int,	i:	int,	j:	int

)	:	void	=

		if	i	<	j	then	(A[i]	:=	A[i+1];	lshift	(A,	i+1,	j))

in

		if	i	<	j	then	let

				val	tmp	=	A[i]	in	lshift	(A,	i,	j);	A[j]	:=	tmp

		end	//	end	of	[if]

end	//	end	of	[lrotate]

fun	rrotate	(

		A:	arrszref	int,	i:	int,	j:	int

)	:	void	=	let

		fun	rshift	(

				A:	arrszref	int,	i:	int,	j:	int

)	:	void	=

		if	i	<	j	then	(A[j]	:=	A[j-1];	rshift	(A,	i,	j-1))

in

		if	i	<	j	then	let

				val	tmp	=	A[j]	in	rshift	(A,	i,	j);	A[i]	:=	tmp

		end	//	end	of	[if]

end	//	end	of	[rrotate]

When	applied	to	an	array	and	two	valid	indexes	i	and	j	for	the	array	such	that	i	is	less	than	or	equal	to
j,	 lrotate 	moves	simultaneously	the	content	of	cell	i	into	cell	j	and	the	content	of	cell	k	to	cell	k-1	for
k	ranging	from	i+1	to	j,	inclusive.	The	function	 rrotate 	is	similar	to	 lrotate 	but	shuffles	elements	in
the	opposite	direction.

Given	 a	 natural	 number	 n,	 the	 following	 defined	 function	 permute 	 prints	 out	 all	 the	 permutations
consisting	 of	 integers	 ranging	 from	 1	 to	 n,	 inclusive	while	 arranging	 the	 output	 according	 to	 the
lexicographic	ordering	on	integer	sequences.

fun	permute

		(n:	int):	void	=	let

//

		#define	i2sz	g0int2uint_int_size

//

//	Creating	array	A	of	size	n

//

		val	A	=	arrszref_make_elt<int>	(i2sz(n),	0)

//

//	Initializing	A	with	integers	from	1	to	n,	inclusive

//

		val	()	=	init(0)	where

		{

				fun	init	(i:	int):	void	=

						if	i	<	n	then	(A[i]	:=	i+1;	init	(i+1))

		}	//	end	of	[where]	//	end	of	[val]

//

		fun	aux

				(i:	int):	void	=

		(

				if	i	<=	n

						then	aux2	(i,	i)

						else	(

								print_intarray	(A);	print_newline	()

)	(*	end	of	[else]	*)

)	(*	end	of	[aux]	*)

//

		and	aux2

				(i:	int,	j:	int):	void	=

		(

				if	j	<=	n	then	let

						val	()	=	(

								rrotate	(A,	i-1,	j-1);	aux	(i+1);	lrotate	(A,	i-1,	j-1)

)	//	end	of	[val]

				in

						aux2	(i,	j+1)

				end	//	end	of	[if]

)	(*	end	of	[aux2]	*)

//

in

		aux	(1)

end	//	end	of	[permute]

Note	that	 where 	is	a	keyword,	and	the	expression	(exp	 where 	 { 	decseq	 })	 for	some	expression	exp
and	declaration	sequence	decseq	is	equivalent	to	the	let-expression	of	the	form	(let 	decseq	 in 	exp
end).	To	understand	the	behavior	of	the	function	 aux ,	let	us	evaluate	 aux(1) 	while	assuming	that	 n 	is
4	and	the	4	elements	of	the	array	 A 	are	1,	2,	3,	and	4.	It	should	be	fairly	straightforward	to	see	that	this
evaluation	leads	to	the	evaluation	of	 aux(2) 	for	4	times:	the	array	 A 	contains	(1,	2,	3,	4)	for	the	first
time,	and	(2,	1,	3,	4)	 for	 the	second	time,	and	(3,	1,	2,	4)	 for	 the	 third	 time,	and	(4,	1,	2,	3)	 for	 the
fourth	 time.	With	 some	 inductive	 reasoning,	 it	 should	not	be	difficult	 to	 see	 that	 evaluating	 aux(1)
indeed	leads	to	all	the	permutations	being	output	according	to	the	lexicographic	ordering	on	integer
sequences.

Please	find	the	entire	code	in	this	section	plus	some	additional	code	for	testing	on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_EFFECTFUL/permord.dats

Matrices

A	matrix	in	ATS	is	just	a	two-dimensional	array	but	it	is	represented	by	a	one-dimensional	array	and
the	representation	is	of	the	row-major	style	(in	contrast	to	the	column-major	style).	Given	a	type	T,
the	type	 mtrxszref(T) 	is	for	a	matrix	combined	with	its	number	of	rows	and	number	of	columns	such
that	 each	 element	 stored	 in	 the	 matrix	 is	 of	 the	 type	 T.	 I	 will	 loosely	 refer	 to	 values	 of	 the	 type
mtrxszref(T) 	as	matrices	from	now	on.	If	there	is	a	clear	need	to	avoid	potential	confusion,	I	may	also
refer	to	them	as	matrix0-values.

Given	a	matrix	M	of	dimension	m	by	n,	the	expression	M[i,j]	means	to	fetch	the	content	of	the	cell	in
M	that	is	indexed	by	(i,	j),	where	i	and	j	are	natural	numbers	strictly	less	than	m	and	n,	respectively.
The	 expression	M[i,j]	 can	 also	be	used	 as	 a	 left	 value.	For	 instance,	 the	 assignment	 (M[i,j]	 :=	 exp)
means	to	evaluate	exp	to	a	value	and	then	store	the	value	into	the	cell	in	M	that	is	indexed	by	(i,	j).

Various	 functions	 and	 function	 templates	 on	matrix0-values	 are	 declared	 in	 the	 file	matrixref.sats,
which	is	automatically	loaded	by	atsopt.	For	instance,	three	function	templates	and	two	polymorphic
functions	on	matrices	are	depicted	by	the	following	interfaces:

fun{a:t@ype}

mtrxszref_make_elt	//	template

		(row:	size_t,	col:	size_t,	x:	a):	mtrxszref	(a)

fun	mtrxszref_get_nrow{a:t@ype}	(M:	mtrxszref	a):	size_t	//	polyfun

fun	mtrxszref_get_ncol{a:t@ype}	(M:	mtrxszref	a):	size_t	//	polyfun

fun{a:t@ype}

mtrxszref_get_elt_at	//	template

		(M:	mtrxszref	a,	i:	size_t,	j:	size_t):	a	//	M[i,j]

fun{a:t@ype}

mtrxszref_set_elt_at	//	template

		(M:	mtrxszref	a,	i:	size_t,	j:	size_t,	x:	a):	void	//	M[i,j]	:=	x

Given	a	type	T	and	three	values	 nrow ,	 ncol 	and	 init 	of	the	types	 size_t ,	 size_t 	and	T,	respectively,
mtrxszref_make_elt<T>	 (row,	 col,	 init) 	 returns	 a	 matrix	 of	 the	 type	 mtrxszref(T) 	 such	 that	 the
dimension	of	the	matrix	is	 nrow 	by	 ncol 	and	each	cell	in	the	matrix	is	initialized	with	the	value	 init .
Given	 a	 matrix	 M	 of	 the	 type	 mtrxszref(T) 	 for	 some	 T,	 mtrxszref_get_nrow(M) 	 and
mtrxszref_get_ncol(M) 	 return	 the	 number	 of	 rows	 and	 the	 number	 of	 columns	 of	 M,	 respectively,
which	are	both	of	the	type	 size_t .	For	convenience,	 mtrxszref_get_nrow(M) 	and	 mtrxszref_get_ncol(M)
can	also	be	written	as	 M.nrow 	and	 M.ncol ,	respectively.	As	for	matrix	access	and	update,	the	function

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-Postiats/prelude/SATS/matrixref.sats

templates	 mtrxszref_get_elt_at 	and	 mtrxszref_set_elt_at 	can	be	called,	respectively.	For	convenience,
bracket	notation	can	used	for	these	functions.

Let	 us	 now	 take	 a	 look	 at	 an	 example.	 The	 following	 defined	 function	 mtrxszref_transpose 	 turns	 a
given	matrix	into	its	transpose:

fun{a:t@ype}

mtrxszref_transpose

		(M:	mtrxszref	a):	void	=	let

//

val	nrow	=	mtrxszref_get_nrow	(M)

//

fnx	loop1

		(i:	size_t):	void	=

		if	i	<	nrow	then	loop2	(i,	0)	else	()

//

and	loop2

		(i:	size_t,	j:	size_t):	void	=

		if	j	<	i	then	let

				val	tmp	=	M[i,j]

		in

				M[i,j]	:=	M[j,i];	M[j,i]	:=	tmp;	loop2	(i,	j+1)

		end	else

				loop1	(i+1)

		//	end	of	[if]

//

in

		loop1	(0)

end	//	end	of	[mtrxszref_transpose]

The	matrix	M	is	assumed	to	be	a	square,	 that	 is,	 its	number	of	rows	equals	 its	number	of	columns.
Note	 that	 the	 two	functions	 loop1 	and	 loop2 	 are	defined	mutually	 tail-recursively,	and	 the	keyword
fnx 	indicates	the	need	to	combine	the	bodies	of	 loop1 	and	 loop2 	so	that	mutual	recursive	tail-calls	in
these	function	bodies	can	be	compiled	into	direct	local	jumps.

Example:	Estimating	the	Constant	Pi

I	 present	 as	 follows	 a	 Monte	 Carlo	 approach	 to	 estimating	 the	 constant	 Pi,	 the	 ratio	 of	 the
circumference	of	a	circle	over	its	diameter.

Assume	that	we	have	a	square	of	the	dimension	N	by	N,	where	N	is	a	relatively	large	natural	number
(e.g.,	1000),	and	a	disk	of	radius	1	that	is	contained	in	the	square.	Let	N2	stand	for	N*N,	that	is,	 the
square	of	N.	If	we	randomly	choose	a	point	inside	the	square,	then	the	probability	for	the	point	to	hit
the	disk	is	Pi/N2.

The	 experiment	 we	 use	 to	 estimate	 the	 constant	 Pi	 can	 be	 described	 as	 follows.	 Given	 a	 natural
number	K,	let	us	randomly	choose	K	points	inside	the	square	in	K	rounds.	In	each	round,	we	choose
exactly	one	point.	If	the	point	chosen	in	round	k	hits	on	the	disk	centered	at	a	previously	chosen	point,
then	we	record	one	hit.	Clearly,	the	expected	number	of	hits	recorded	in	round	k	is	(k-1)*Pi/N2	as	k-1
points	have	already	being	chosen	in	the	previous	rounds.	Therefore,	in	K	rounds,	the	expected	total
number	of	hits	is	(K*(K-1)/2)*Pi/N2.	If	K	is	fixed	to	be	N2,	then	the	expected	total	number	of	hits	is
(N2-1)*Pi/2.	 It	 can	 be	 proven	 that	 the	 total	 number	 of	 hits	 divided	 by	N2	 converges	 to	 Pi/2	 (with
probability	1)	as	N	approaches	infinity.

If	we	implement	the	above	experiment	directly	based	on	the	given	description,	the	time-complexity	of
the	implementation	is	evidently	proportional	to	N2*N2	as	the	time	spent	in	round	k	is	proportional	to
k,	where	 k	 ranges	 from	1	 to	N2.	An	 implementation	 as	 such	 is	 simply	 impractical	 for	 handling	N
around	 the	 order	 1000	 (and	 thus	N2	 around	 the	 order	 of	 1,000,000).	 To	 address	 the	 issue,	we	 can
impose	 a	 grid	 on	 the	 square,	 dividing	 it	 into	N2	 unit	 squares	 (of	 the	 dimension	 1	 by	 1).	We	 then
associate	with	each	unit	square	a	list	of	chosen	points	that	are	inside	it.	In	each	round,	we	first	choose
a	point	randomly	inside	the	original	square;	we	next	locate	the	unit	square	that	contains	this	point;	we
then	only	search	the	lists	associated	with	the	unit	square	or	any	of	its	neighbors	to	count	the	number
of	hits	generated	by	the	point	chosen	in	this	round	as	this	point	cannot	hit	any	disks	centered	at	points
that	are	not	on	these	lists.	As	each	unit	square	can	have	at	most	8	neighbors	and	the	average	length	of
the	 list	associated	with	each	square	 is	 less	 than	1	during	 the	experiment,	 the	 time	spent	during	each
round	is	O(1),	that	is,	bounded	by	a	constant.	Hence,	the	time	taken	by	the	entire	experiment	is	O(N2).

An	implementation	 that	precisely	matches	 the	above	description	plus	some	testing	code	 is	available
on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_EFFECTFUL/montecarlo.dats

Simple	Input	and	Output

Handling	 I/O	 in	 ATS	 properly	 requires	 the	 availability	 of	 both	 dependent	 types	 and	 linear	 types,
which	I	will	cover	elsewhere.	In	this	section,	I	only	present	a	means	for	allowing	the	programmer	to
access	certain	very	basic	I/O	functionalities.

A	file	handle	essentially	associates	a	stream	(of	bytes)	with	a	file	identifier	(represented	as	an	integer).
In	ATS,	the	type	for	file	handles	is	 FILEref .	There	are	three	standard	file	handles,	which	are	listed	as
follows:

stdin_ref :	standard	input

stdout_ref :	standard	output

stderr_ref :	standard	error	output

Various	functions	on	file	handles	are	declared	in	the	file	filebas.sats,	which	is	automatically	loaded
by	 atsopt.	 For	 instance,	 the	 functions	 for	 opening	 and	 closing	 file	 handles	 have	 the	 following
interfaces:

fun	fileref_open_exn

(

		path:	string,	fm:	file_mode

)	:	FILEref	//	endfun

fun	fileref_close	(fil:	FILEref):	void

Note	that	these	two	functions	abort	immediately	whenever	an	error	occurs.	The	following	function	is
an	optional	version	of	 fileref_open_exn ,	and	the	caller	needs	to	inspect	the	value	returned	by	a	call	to
fileref_open_opt 	to	see	if	a	file	handle	is	actually	obtained.

fun	fileref_open_opt

		(path:	string,	fm:	file_mode)	:	Option_vt	(FILEref)

The	type	 file_mode 	is	for	values	representing	file	modes,	which	are	listed	as	follows:

file_mode_r :	opening	a	file	for	reading	and	positioning	the	associated	stream	at	the	beginning	of
the	file.

file_mode_rr :	 opening	 a	 file	 for	 both	 reading	 and	 and	 writing	 and	 positioning	 the	 associated

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-Postiats/prelude/SATS/filebas.sats

stream	at	the	beginning	of	the	file.

file_mode_w :	 truncating	 a	 given	 file	 to	 zero	 length	 or	 creating	 a	 new	 one	 for	 writing	 and
positioning	the	associated	stream	at	the	beginning	of	the	file.

file_mode_ww :	truncating	a	given	file	to	zero	length	or	creating	a	new	one	for	both	reading	and
writing	and	positioning	the	associated	stream	at	the	beginning	of	the	file.

file_mode_a :	 opening	a	 file	 for	writing	and	positioning	 the	associated	 stream	at	 the	end	of	 the
file.

file_mode_aa :	opening	a	file	for	both	reading	and	writing	and	positioning	the	associated	stream
at	the	beginning	of	the	file	for	reading	and	at	the	end	for	writing.

As	an	example,	 the	following	short	program	opens	a	file	handle,	outputs	 the	string	"Hello,	world!"
plus	a	newline	into	the	stream	associated	with	the	file	handle	and	then	closes	the	file	handle:

implement

main0	()	=

{

val	out	=

		fileref_open_exn	("hello.txt",	file_mode_w)

val	()	=	fprint_string	(out,	"Hello,	world!\n")

val	()	=	fileref_close	(out)

//

}	(*	end	of	[main0]	*)

After	executing	the	program,	we	obtain	a	file	of	the	name	"hello.txt"	in	the	current	working	directory
containing	the	expected	content.	There	are	various	fprint-functions	in	ATS	for	printing	out	data	into
the	stream	associated	with	a	given	file	handle.	Often	the	programmer	can	simply	use	the	name	 fprint
to	refer	to	these	functions	due	to	the	support	for	overloading	in	ATS.

Another	common	I/O	function	is	given	the	following	interface:

fun	fileref_get_line_string	(fil:	FILEref):	Strptr1

The	function	 fileref_get_line_string 	reads	a	line	from	the	stream	associated	with	a	given	file	handle,
and	it	returns	a	value	of	the	type	 Strptr1 .	For	the	moment,	I	will	simply	say	that	such	a	value	is	just
like	a	string	except	 that	 it	needs	to	be	freed	explicitly.	As	an	example,	 the	following	short	program
echos	onto	the	standard	output	each	line	read	from	the	standard	input:

implement

main0	(

//	argumentless

)	=	loop	()	where

{

//

fun	loop	():	void	=	let

		val	isnot	=	fileref_isnot_eof	(stdin_ref)

in

//

if	isnot	then	let

		val	line	=

				fileref_get_line_string	(stdin_ref)

		val	((*void*))	=	fprintln!	(stdout_ref,	line)

		val	((*void*))	=	strptr_free	(line)

in

		loop	()

end	else	((*loop	exits	as	the	end-of-file	is	reached*))

//

end	(*	end	of	[loop]	*)

//

}	(*	end	of	[main0]	*)

Note	that	the	function	 strptr_free 	is	called	to	free	a	linear	string	(of	the	type	 Strptr1).	Often,	typing
the	CTRL-D	character	can	terminate	the	above	program	for	echoing	each	line	of	input.

Chapter	7.	Modularity
Generally	speaking,	modularity	in	programming	means	to	organize	programs	in	a	modular	fashion
so	that	they	each	can	be	constructed	in	a	relatively	isolated	manner	and	then	be	combined	to	function
coherently.	I	will	introduce	in	this	section	some	features	in	ATS	that	are	largely	designed	to	facilitate
program	organization.

The	code	employed	for	illustration	in	this	chapter	plus	some	additional	code	for	testing	is	available
on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_MODULARITY/

Types	as	a	Form	of	Specification

The	interface	for	a	function	or	value	specifies	a	type	that	any	implementation	of	the	function	or	value
should	possess.	For	instance,	the	following	code	defines	a	function	 fact 	for	computing	the	factorial
of	a	given	integer:

fun	fact	(x:	int):	int	=	if	x	>	0	then	x	*	fact	(x-1)	else	1

It	is	also	possible	to	first	declare	an	interface	for	 fact 	as	follows:

extern	fun	fact	(x:	int):	int

where	 extern 	 is	a	keyword	 in	ATS	 that	 initiates	 the	declaration	of	an	 interface.	Alternative	ways	 to
declare	an	interface	for	 fact 	are	given	as	follows:

extern	fun	fact	:	(int)	->	int

extern	val	fact	:	(int)	->	int

If	 fact 	is	declared	to	be	a	function,	then	it	is	required	to	be	applied	when	occurring	in	code.	If	it	is
declared	to	be	a	value,	there	is	no	such	a	restriction.

A	function	 interface	can	be	considered	as	a	 form	of	specification.	For	 instance,	 the	above	 interface
for	 fact 	specifies	that	 fact 	is	a	function	that	takes	one	argument	required	to	be	an	integer	and	returns
a	value	guaranteed	 to	be	an	 integer.	What	 is	 so	 special	 about	 this	 form	of	 specification	 is	 that	 it	 is
formally	 enforced	 in	 ATS	 through	 typechecking:	 Any	 well-typed	 implementation	 of	 fact 	 in	 ATS
must	 possess	 the	 interface	 declared	 for	 it.	 Of	 course,	 this	 interface	 for	 fact 	 is	 not	 a	 precise
specification	as	there	are	(infinitely)	many	functions	that	can	be	given	the	same	interface.	This	kind	of
imprecision	 can,	 however,	 be	 reduced	 or	 even	 eliminated,	 sometimes.	 After	 dependent	 types	 are
introduced,	 I	 will	 present	 an	 interface	 for	 fact 	 such	 that	 any	 implementation	 of	 the	 interface	 is
guaranteed	to	implement	precisely	the	factorial	function	as	is	defined	by	the	following	two	equations:

fact(0)	=	1

fact(n)	=	n	*	fact	(n-1)	for	each	natural	number	n	>	0

An	 implementation	 for	 fact 	 as	 the	 following	 one	 can	 be	 given	 at	 any	 point	 where	 the	 declared
interface	for	 fact 	is	accessible:

implement	fact	(x)	=	if	x	>	0	then	x	*	fact	(x-1)	else	1

The	keyword	 implement 	is	for	initiating	an	implementation	of	a	function	or	value	whose	interface	is
already	declared.	 It	 is	 fairly	common	 to	 see	 the	 following	style	of	coding,	usually,	by	a	beginning
ATS	programmer:

implement	fact	(x:	int):	int	=	if	x	>	0	then	x	*	fact	(x-1)	else	1

While	this	implementation	can	pass	typechecking,	it	is	nonetheless	of	a	poor	style:	The	types	provided
by	the	programmer	for	the	argument	and	the	result	of	 fact 	are	redundant	as	they	can	be	automatically
synthesized	by	the	typechecker.

As	an	example	of	an	interface	for	a	value,	 fact10 	is	declared	as	follows	to	be	a	value	of	the	type	 int :

extern	val	fact10	:	int

The	following	implementation	for	 fact10 	can	be	given	at	any	point	where	the	declared	interface	for
fact10 	is	accessible:

implement	fact10	=	fact	(10)

As	 another	 example,	 the	 following	 code	 declares	 an	 interface	 for	 a	 polymorphic	 function	 named
swap_boxed :

extern

fun	swap_boxed{a,b:type}	(xy:	(a,	b)):	(b,	a)

Note	 that	 both	 type	 variables	 a 	 and	 b 	 are	 boxed.	 An	 implementation	 for	 swap_boxed 	 is	 given	 as
follows:

implement	swap_boxed{a,b}	(xy)	=	(xy.1,	xy.0)

The	syntax	 {a,b} 	is	for	passing	static	arguments	 a 	and	 b 	to	 swap_boxed 	simultaneously.	As	neither	 a
nor	 b 	is	actually	used	in	the	body	of	 swap_boxed ,	it	is	allowed	to	drop	 {a,b} 	in	this	case.

As	 yet	 another	 example,	 the	 following	 code	 declares	 an	 interface	 for	 a	 function	 template	 named
swap_tmplt :

extern

fun{a,b:t@ype}	swap_tmplt	(xy:	(a,	b)):	(b,	a)

Note	that	both	type	variables	 a 	and	 b 	are	of	the	sort	 t@ype ,	indicating	that	they	can	be	of	any	size.	An

implementation	for	 swap_tmplt 	is	given	as	follows:

implement{a,b}	swap_tmplt	(xy)	=	(xy.1,	xy.0)

It	is	a	standard	practice	for	a	programmer	to	first	design	interfaces	for	the	functions	to	be	supported
in	a	package	before	actually	implementing	any	of	these	functions.	When	such	interfaces	are	available,
application	 programs	 can	 be	 constructed	 to	 test	 whether	 the	 interface	 design	 makes	 sense	 or	 is
convenient	for	practical	use.	Please	remember	that	a	superb	implementation	of	a	poor	design	cannot
make	 the	 design	 any	better.	Therefore,	 testing	 a	 design	before	 actually	 implementing	 it	 is	 often	 of
vital	importance.	This	is	especially	true	if	the	involved	design	is	complex.

Static	and	Dynamic	ATS	Files

The	first	letters	in	the	ATS	filename	extensions	sats	and	dats	refer	to	the	words	static	and	dynamic,
respectively.	For	instance,	foo.sats	is	a	name	for	a	static	file	while	bar.dats	is	for	a	dynamic	one.	A

static	 file	 is	 often	 referred	 to	 as	 a	 SATS-file,	 and	 it	 usually	 contains	 interface	 declarations	 for
functions	and	values,	datatype	declarations,	type	definitions,	etc.	The	primary	purpose	of	a	SATS-file
is	for	allowing	its	content	to	be	shared	among	various	other	ATS	files,	either	static	or	dynamic.

Let	us	now	go	through	a	simple	example	to	see	a	typical	use	of	static	files.	Suppose	that	we	want	to
implement	 the	 Ackermann's	 function,	 which	 is	 famous	 for	 being	 recursive	 but	 not	 primitive
recursive.	 In	 a	 static	 file	 named	 acker.sats	 (or	 any	 other	 legal	 filename),	 we	 can	 declare	 the

following	function	interface:

fun	acker	(m:	int,	n:	int):	int

Please	 note	 that	 one	 should	 not	 use	 the	 keyword	 extern 	 when	 declaring	 an	 interface	 for	 either	 a
function	 or	 a	 value	 in	 a	 static	 file.	 Then	 in	 a	 dynamic	 file	 named	acker.dats	 (or	 any	 other	 legal

filename),	we	can	give	the	following	implementation:

staload	"acker.sats"

implement

acker	(m,	n)	=

		if	m	>	0	then

				if	n	>	0	then	acker	(m-1,	acker	(m,	n-1))

				else	acker	(m-1,	1)

		else	n+1

//	end	of	[acker]

The	keyword	 staload 	 indicates	 to	 the	ATS	 typechecker	 that	 the	 file	 following	 it	 is	 to	 be	 statically
loaded	during	typechecking.	Essentially,	statically	loading	a	file	means	to	put	the	content	of	the	file	in
a	namespace	that	can	be	accessed	by	the	following	code.	It	is	important	to	note	that	static	loading	is
different	from	plain	file	inclusion.	The	latter	is	also	supported	in	ATS,	and	it	is	a	feature	I	will	cover
elsewhere.

It	is	also	possible	to	give	the	following	implementation	for	the	declared	function	 acker :

staload	ACKER	=	"acker.sats"

implement	$ACKER.acker

		(m,	n)	=	acker	(m,	n)	where	{

		fun	acker	(m:	int,	n:int):	int	=	

				if	m	>	0	then

						if	n	>	0	then	acker	(m-1,	acker	(m,	n-1))

						else	acker	(m-1,	1)

				else	n+1

}	//	end	of	[$ACKER.acker]

In	this	case,	the	namespace	for	storing	the	content	of	the	file	acker.sats	is	given	the	name	ACKER,

and	 the	 prefix	 $ACKER. 	 (the	 dollar	 sign	 followed	 by	ACKER	 followed	 by	 the	 dot	 symbol)	must	 be
attached	 to	any	name	 that	 refers	 an	entity	 (a	 function,	 a	value,	 a	datatype,	 a	 constructor	 (associated
with	a	datatype),	a	type	definition,	etc.)	declared	in	acker.sats.	When	there	are	many	static	files	to	be

loaded,	 it	 is	often	a	good	practice	to	assign	names	to	the	namespaces	holding	these	files	so	that	 the
original	source	of	each	declared	entity	can	be	readily	tracked	down.

In	another	file	named	test_acker.dats,	let	us	write	the	following	code:

//

#include

"share/atspre_staload.hats"

//

staload	"acker.sats"

dynload	"acker.dats"

implement

main0	()	=	()	where	{

//

//	acker	(3,	3)	should	return	61

//

		val	()	=	assertloc	(acker	(3,	3)	=	61)

}	//	end	of	[main0]

The	 keyword	 dynload 	 indicates	 to	 the	ATS	 compiler	 to	 generate	 a	 call	 to	 the	 initializing	 function
associated	with	 the	file	acker.dats.	This	 is	mandatory	as	an	error	would	otherwise	be	 reported	at

link-time.	Usually,	calling	the	initializing	function	associated	with	a	dynamic	file	is	necessary	only	if
there	 is	 a	 value	 implemented	 in	 the	 file.	 In	 this	 case,	 there	 is	 only	 a	 function	 implemented	 in
acker.dats.	If	we	include	the	following	line	somewhere	inside	acker.dats:

#define	ATS_DYNLOADFLAG	0	//	no	need	for	dynloading	at	run-time

then	 the	 line	 starting	 with	 the	 keyword	 dynload 	 in	 test_acker.dats	 is	 no	 longer	 needed.	 The

function	 assertloc 	verifies	at	 run-time	 that	 its	argument	evaluates	 to	 the	boolean	value	 true .	 In	 the
case	where	the	argument	evaluates	 to	 false ,	 the	 function	call	aborts	and	a	message	 is	 reported	 that
contains	the	name	of	the	file,	which	is	test_acker.dats	in	this	example,	and	the	location	at	which	the

source	 code	 of	 the	 call	 is	 found	 in	 the	 file.	 If	 this	 sounds	 a	 bit	 confusing,	 please	 try	 to	 execute	 a
program	that	contains	a	call	to	 assertloc 	on	 false 	and	you	will	see	clearly	what	happens.

The	 simplest	 way	 to	 compile	 the	 two	 files	 acker.dats	 and	 test_acker.dats	 is	 to	 issue	 the

following	command-line:

atscc	-o	test_acker	acker.dats	test_acker.dats

The	generated	excutable	test_acker	is	in	the	current	working	directory.	The	compilation	can	also	be

performed	separately	as	is	demonstrated	below:

atscc	-c	acker.dats

atscc	-c	test_acker.dats

atscc	-o	test_acker	acker_dats.o	test_acker_dats.o

This	style	of	separate	compilation	works	particularly	well	when	it	is	employed	by	the	make	utility.

If	we	want	to,	we	can	also	merge	acker.sats	and	acker.dats	into	a	single	filename	of	the	following

content:

extern

fun	acker	(m:	int,	m:	int):	int

implement

acker	(m,	n)	=

		if	m	>	0	then

				if	n	>	0	then	acker	(m-1,	acker	(m,	n-1))

				else	acker	(m-1,	1)

		else	n+1

//	end	of	[acker]

Suppose	that	this	single	file	is	given	the	name	acker3.dats.	Then	the	testing	code	can	be	written	as

follows:

//

#include

"share/atspre_staload.hats"

//

staload	"acker3.dats"

dynload	"acker3.dats"

implement

main0	()	=	()	where	{

//

//	acker	(3,	3)	should	return	61

//

		val	()	=	assertloc	(acker	(3,	3)	=	61)

}	//	end	of	[main0]

Note	that	it	is	perfectly	fine	for	a	dynamic	ATS	file	to	be	statically	loaded.	Actually,	a	static	ATS	file	is
really	just	a	special	case	of	dynamic	ATS	file	in	which	there	is	no	implementation	(of	either	functions
or	values).

Generic	Template	Implementation

Interfaces	 for	 function	 templates	 are	 mostly	 similar	 to	 those	 for	 functions.	 For	 example,	 the
following	 syntax	 declares	 an	 interface	 in	 a	 dynamic	 file	 for	 a	 function	 template	 of	 the	 name
list0_fold_left :

extern

fun{

a:t0p}{b:t0p

}	list0_fold_left

		(xs:	list0	b,	f:	(a,	b)	-<cloref1>	a,	init:	a):	a

where	 t0p 	is	a	shorthand	for	 t@ype .

If	the	same	interface	is	declared	in	a	static	file,	the	keyword	 extern 	should	be	dropped.	Implementing
an	 interface	for	a	 function	 template	 is	also	mostly	similar	 to	 implementing	one	for	a	 function.	The
above	interface	for	 list0_fold_left 	is	given	an	implementation	in	the	following	code:

implement{a}{b}

list0_fold_left

		(xs,	f,	init)	=	let

//

fun	loop

(

		xs:	list0	b,	res:	a

)	:	a	=

(

		case+	xs	of

		|	list0_nil	()	=>	res

		|	list0_cons	(x,	xs)	=>	loop	(xs,	f	(res,	x))

)	(*	end	of	[loop]	*)

//

in

		loop	(xs,	init)

end	//	end	of	[list0_fold_left]

Note	 that	 template	parameters	are	 required	 to	appear	 immediately	after	 the	keyword	 implement ,	and
they	 cannot	 be	 omitted.	 Template	 parameters	 can	 also	 be	 passed	 sequentially	 as	 is	 shown	 in	 the
following	short	example:

extern

fun

{a,b:t0p}{c:t0p}

app2	(f:	(a,	b)	-<cloref1>	c,	x:	a,	y:	b):	c

implement{a,b}{c}	app2	(f,	x,	y)	=	f	(x,	y)

The	 style	 of	 template	 implementation	 presented	 in	 this	 section	 is	 referred	 to	 as	 generic	 template
implementation.	 I	 will	 later	 present	 a	 different	 style	 of	 template	 implementation,	 which	 is	 often
referred	to	as	specific	template	implementation.

Specific	Template	Implementation

Implementing	an	interface	for	a	function	template	specifically	means	to	give	an	implementation	for	a
fixed	instance	of	the	template.	For	instance,	the	following	interface	is	for	a	function	template	of	the
name	 eq_elt_elt :

fun{a:t0p}

eq_elt_elt	(x:	a,	y:	a):	bool	//	a	generic	equality

There	is	no	meaningful	generic	implementation	for	 eq_elt_elt 	as	equality	test	for	values	of	a	type	T
depends	 on	 T.	 Two	 specific	 template	 implementations	 are	 given	 as	 follows	 for	 the	 instances
eq_elt_elt<int> 	and	 eq_elt_elt<double> :

implement	eq_elt_elt<int>	(x,	y)	=	g0int_eq	(x,	y)

implement	eq_elt_elt<double>	(x,	y)	=	g0float_eq	(x,	y)

where	 eq_int_int 	and	 eq_double_double 	are	equality	functions	for	values	of	the	type	 int 	and	 double ,
respectively.	It	is	also	possible	to	give	the	implementations	as	follows:

implement	eq_elt_elt<int>	(x,	y)	=	(x	=	y)

implement	eq_elt_elt<double>	(x,	y)	=	(x	=	y)

This	is	allowed	as	the	symbol	 = 	is	already	overloaded	with	 g0int_eq 	and	 g0float_eq 	(in	addition	to
many	other	functions).

Let	 us	 now	 see	 a	 typical	 use	 of	 specific	 template	 implementation.	 The	 following	 defined	 function
template	 listeq 	implements	an	equality	function	on	lists:

fun{

a:t0p

}	listeq

(

		xs:	list0	a

,	ys:	list0	a

)	:	bool	=	(

		case+	(xs,	ys)	of

		|	(list0_cons	(x,	xs),

					list0_cons	(y,	ys))	=>	

						if	eq_elt_elt<a>	(x,	y)	then	listeq	(xs,	ys)	else	false

		|	(list0_nil	(),	list0_nil	())	=>	true

		|	(_,	_)	=>	false

)	(*	end	of	[listeq]	*)

Given	two	lists	xs	and	ys,	 listeq 	returns	 true 	if	and	only	if	xs	and	ys	are	of	the	same	length	and	each
element	in	xs	equals	the	corresponding	one	in	ys	(according	to	 eq_elt_elt).	Given	a	type	T,	it	is	clear
that	the	instance	 eq_elt_elt<T> 	is	needed	if	 listeq 	is	called	on	two	lists	of	the	type	 list0(T) .	In	other
words,	a	specific	implementation	for	 eq_elt_elt<T> 	should	be	given	if	a	call	to	 listeq 	is	to	be	made
on	two	lists	of	the	type	 list0(T) .	Note	that	the	implementation	for	an	instance	of	a	function	template	is
required	to	be	accessible	from	the	file	where	the	instance	is	called.

As	a	comparison,	 the	following	defined	function	 template	 listeqf 	 also	 implements	equality	 test	on
two	given	lists:

fun{

a:t0p

}	listeqf

(

		xs:	list0	a

,	ys:	list0	a

,	eq:	(a,	a)	->	bool

)	:	bool	=	(

		case+	(xs,	ys)	of

		|	(list0_cons	(x,	xs),

					list0_cons	(y,	ys))	=>	

						if	eq	(x,	y)	then	listeqf	(xs,	ys,	eq)	else	false

		|	(list0_nil	(),	list0_nil	())	=>	true

		|	(_,	_)	=>	false

)	(*	end	of	[listeqf]	*)

In	this	case,	 listeqf 	takes	an	additional	argument	 eq 	that	tests	whether	two	list	elements	are	equal.	As
listeq 	is	a	first-order	function	while	 listeqf 	is	a	higher-order	one,	it	is	likely	for	the	former	to	be
compiled	 into	more	 efficient	 object	 code.	 I	would	 like	 to	 point	 out	 that	 the	 library	 of	ATS	makes
pervasive	use	of	specifically	implemented	templates.

Please	find	the	code	presented	in	this	section	plus	some	additional	testing	code	available	on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_MODULARITY/listeq.dats

Abstract	Types

The	name	abstract	type	 refers	 to	a	 type	such	that	values	of	 the	type	are	represented	in	a	way	that	 is
completely	hidden	 from	users	of	 the	 type.	This	 form	of	 information-hiding	attempts	 to	 ensure	 that
changes	to	the	implementation	of	an	abstract	type	cannot	introduce	type-errors	into	well-typed	code
that	makes	use	of	the	abstract	type.	In	ATS	as	well	as	in	many	other	programming	languages,	abstract
types	play	a	pivotal	 role	 in	 support	of	modular	programming.	 I	will	present	 as	 follows	a	concrete
example	to	illustrate	a	typical	use	of	abstract	types	in	practice.

Suppose	 that	 we	 are	 to	 implement	 a	 package	 to	 provide	 various	 funtionalities	 on	 finite	 sets	 of
integers.	We	 first	 declare	 an	 abstract	 type	 intset 	 as	 follows	 for	 values	 representing	 finite	 sets	 of
integers:

abstype	intset	//	a	boxed	abstract	type

The	 keyword	 abstype 	 indicates	 that	 the	 declared	 abstract	 type	 intset 	 is	 boxed,	 that	 is,	 the	 size	 of
intset 	is	the	same	as	that	of	a	pointer.	There	is	a	related	keyword	 abst@ype 	for	introducing	unboxed
abstract	types,	which	will	be	explained	elsewhere.	We	next	present	an	interface	for	each	function	or
value	that	we	want	to	implement	in	the	package:

//	empty	set

val	intset_empty	:	intset

//	singleton	set	of	[x]

fun	intset_make_sing	(x:	int):	intset

//	turning	a	list	into	a	set

fun	intset_make_list	(xs:	list0	int):	intset

//	turning	a	set	into	a	list

fun	intset_listize	(xs:	intset):	list0	(int)

//	membership	test

fun	intset_ismem	(xs:	intset,	x:	int):	bool

//	computing	the	size	of	[xs]

fun	intset_size	(xs:	intset):	size_t

//	adding	[x]	into	[xs]

fun	intset_add	(xs:	intset,	x:	int):	intset

//	deleting	[x]	from	[xs]

fun	intset_del	(xs:	intset,	x:	int):	intset

//	union	of	[xs1]	and	[xs2]

fun	intset_union	(xs1:	intset,	xs2:	intset):	intset

//	intersection	of	[xs1]	and	[xs2]

fun	intset_inter	(xs1:	intset,	xs2:	intset):	intset

//	difference	between	[xs1]	and	[xs2]

fun	intset_differ	(xs1:	intset,	xs2:	intset):	intset

Let	us	now	suppose	 that	 the	declaration	 for	 intset 	 and	 the	above	 interfaces	are	all	 stored	 in	a	 file
named	intset.sats	(or	any	other	legal	name	for	a	static	file).

Usually,	a	realistic	implementation	for	finite	sets	is	based	on	some	kind	of	balanced	trees	(e.g.,	AVL
trees,	red-black	trees).	For	the	purpose	of	illustration,	I	hereby	give	an	implementation	in	which	finite
sets	of	integers	are	represented	as	ordered	lists	of	integers.	This	implementation	is	contained	in	a	file
named	intset.dats,	which	is	available	on-line.	In	order	to	construct	values	of	an	abstract	 type,	we

need	to	concretize	it	temporarily	by	using	the	following	form	of	declaration:

assume	intset	=	list0	(int)

where	 assume 	is	a	keyword.	This	assume-declaration	equates	 intset 	with	the	type	 list0	(int) 	and	this
equation	is	valid	until	the	end	of	the	scope	in	which	it	is	introduced.	As	the	assume-declaration	is	at
the	toplevel	in	intset.dats,	the	assumption	that	 intset 	equals	 list0	(int) 	 is	valid	until	 the	end	of

the	 file.	There	 is	 a	global	 restriction	 in	ATS	 that	 allows	each	abstract	 type	 to	be	concretized	by	an
assume-declaration	 at	 most	 once.	More	 specifically,	 if	 an	 abstract	 type	 is	 concretized	 in	 two	 files
foo1.dats	and	foo2.dats,	then	these	two	files	cannot	be	used	together	to	generate	an	executable.	The

rest	of	implementation	in	 intset 	is	all	standard.	For	instance,	the	union	operation	on	two	given	sets
of	integers	is	implemented	as	follows:

implement

intset_union

		(xs1,	xs2)	=	(

case+	(xs1,	xs2)	of

|	(list0_cons	(x1,	xs11),

			list0_cons	(x2,	xs21))	=>

		let

				val	sgn	=	compare	(x1,	x2)

		in

				case+	0	of

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_MODULARITY/intset.dats

				|	_	when	sgn	<	0	=>

								list0_cons{int}(x1,	intset_union	(xs11,	xs2))

				|	_	when	sgn	>	0	=>

								list0_cons{int}(x2,	intset_union	(xs1,	xs21))

				|	_	(*	sgn	=	0	*)	=>

								list0_cons{int}(x1,	intset_union	(xs11,	xs21))

				//	end	of	[case]

		end	//	end	of	[(cons,	cons)]

|	(list0_nil	(),	_)	=>	xs2

|	(_,	list0_nil	())	=>	xs1

)	(*	end	of	[intset_union]	*)

There	 is	 also	 some	 testing	 code	 available	 on-line	 that	 makes	 use	 of	 some	 functions	 declared	 in
intset.sats.	Often	 testing	code	as	such	 is	constructed	 immediately	after	 the	 interfaces	for	various

functions	and	values	in	a	package	are	declared.	This	allows	these	interfaces	to	be	tried	before	they	are
actually	implemented	so	that	potential	flaws	can	be	exposed	in	a	timely	fashion.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_MODULARITY/test_intset.dats

Example:	A	Package	for	Rationals

Let	us	represent	a	rational	number	as	a	pair	of	integers.	If	we	declare	a	boxed	abstract	type	 rat 	 for
values	 representing	 rational	 numbers,	 then	 each	 value	 of	 the	 type	 rat 	 is	 stored	 in	 heap-allocated
memory,	 which	 can	 only	 be	 reclaimed	 through	 garbage	 collection	 (GC).	 Instead,	 we	 follow	 an
alternative	approach	by	declaring	 rat 	as	an	unboxed	abstract	type.	Therefore,	a	declaration	like	the
following	one	is	expected:

abst@ype	rat

The	problem	with	this	declaration	is	that	it	is	too	abstract.	As	there	is	not	information	given	about	the
size	of	the	type	 rat ,	the	ATS	compiler	does	not	even	know	how	much	memory	is	needed	for	storing
a	value	of	the	type	 rat .	However,	the	programmer	should	not	assume	that	such	a	form	of	declaration
is	 useless.	 There	 are	 realistic	 circumstances	 where	 a	 declaration	 of	 this	 form	 can	 be	 of	 great
importance,	and	this	is	a	topic	I	will	cover	elsewhere.	For	now,	let	us	declare	an	unboxed	abstract	type
as	follows:

abst@ype	rat	=	(int,	int)

This	declaration	simply	informs	the	ATS	compiler	that	the	representation	for	values	of	the	type	 rat 	is
the	same	as	the	one	for	values	of	the	type	 (int,	int) .	However,	this	information	is	not	made	available
to	the	typechecker	of	ATS.	In	particular,	if	a	value	of	the	type	 rat 	is	treated	as	a	pair	of	integers	in	a
program,	then	a	type-error	will	surely	occur.

The	following	code	is	contained	in	a	file	named	ratmod.sats,	which	is	available	on-line.

exception	Denominator

exception	DivisionByZero

fun	rat_make_int_int	(p:	int,	q:	int):	rat

fun	ratneg:	(rat)	->	rat	//	negation

fun	ratadd:	(rat,	rat)	->	rat	//	addition

fun	ratsub:	(rat,	rat)	->	rat	//	subtraction

fun	ratmul:	(rat,	rat)	->	rat	//	multiplication

fun	ratdiv:	(rat,	rat)	->	rat	//	division

The	exception	 Denominator 	 is	for	reporting	an	erroneous	occasion	where	a	rational	number	is	to	be
formed	 with	 a	 denominator	 equal	 to	 zero.	 Given	 two	 integers	 representing	 the	 numerator	 and

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_MODULARITY/ratmod.sats

denominator	 of	 a	 rational	 number,	 the	 function	 rat_make_int_int 	 returns	 a	 value	 representing	 the
rational	 number.	 The	 following	 implementation	 of	 rat_make_int_int 	 can	 be	 found	 in	 a	 file	 named
ratmod.dats,	which	is	also	available	on-line.

implement

rat_make_int_int	(p,	q)	=	let

		fun	make	(

				p:	int,	q:	int

)	:	rat	=	let

				val	r	=	gcd	(p,	q)	in	(p	/	r,	q	/	r)

		end	//	end	of	[make]

//

		val	()	=	if	q	=	0	then	$raise	Denominator

//

in

		if	q	>	0	then	make	(p,	q)	else	make	(~p,	~q)

end	//	end	of	[rat_make_int_int]

Given	a	pair	of	integers	p	and	q	such	that	q	is	not	zero,	the	function	 rat_make_int_int 	returns	another
pair	 of	 integers	 p1	 and	 q1	 such	 that	 q1	 is	 positive,	 p1	 and	 q1	 are	 coprimes,	 that	 is,	 their	 greatest
common	divisor	is	1,	and	p1/q1	equals	p/q.	With	 rat_make_int_int ,	it	is	straightforward	to	implement
as	follows	the	arithmetic	operations	on	rational	numbers:

implement	ratneg	(x)	=	(~x.0,	x.1)

implement

ratadd	(x,	y)	=

		rat_make_int_int	(x.0	*	y.1	+	x.1	*	y.0,	x.1	*	y.1)

//	end	of	[ratadd]

implement

ratsub	(x,	y)	=

		rat_make_int_int	(x.0	*	y.1	-	x.1	*	y.0,	x.1	*	y.1)

//	end	of	[ratsub]

implement

ratmul	(x,	y)	=	rat_make_int_int	(x.0	*	y.0,	x.1	*	y.1)

implement

ratdiv	(x,	y)	=	(

if	y.0	>	0

		then	rat_make_int_int	(x.0	*	y.1,	x.1	*	y.0)	else	$raise	DivisionByZero()

//	end	of	[if]

)	(*	end	of	[ratdiv]	*)

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_MODULARITY/ratmod.dats

There	 is	 also	 some	 testing	 code	 available	 on-line	 that	 makes	 use	 of	 some	 functions	 declared	 in
ratmod.sats.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_MODULARITY/test_ratmod.dats

Example:	A	Functorial	Package	for	Rationals

The	previous	package	 for	 rational	numbers	contains	a	 serious	 limitation:	The	 type	 for	 the	 integers
employed	in	the	representation	of	rational	numbers	is	fixed	to	be	 int .	 If	we	ever	want	 to	represent
rational	numbers	based	on	integers	of	a	different	type	(for	instance,	 lint 	for	long	integers	or	 llint
for	 long	 long	 integers),	 then	 we	 need	 to	 implement	 another	 package	 for	 rationals	 based	 on	 such
integers.	It	is	clearly	advantageous	to	avoid	this	style	of	programming	as	it	involves	code	duplication
to	a	great	extent.

The	approach	I	employ	in	this	section	to	implement	a	package	for	rational	numbers	that	can	address
the	 aforementioned	 limitation	 follows	 the	 idea	 of	 functors	 in	 the	 programming	 language	Standard
ML	(SML).	Let	us	first	introduce	a	type	definition	as	follows:

typedef

intmod	(a:t@ype)	=	'{

		ofint=	int	->	a

,	fprint=	(FILEref,	a)	->	void

,	neg=	(a)	->	a	//	negation

,	add=	(a,	a)	->	a	//	addition

,	sub=	(a,	a)	->	a	//	subtraction

,	mul=	(a,	a)	->	a	//	multiplication

,	div=	(a,	a)	->	a	//	division

,	mod=	(a,	a)	->	a	//	modulo	operation

,	cmp=	(a,	a)	->	int	//	comparison

}	//	end	of	[intmod]

Given	a	type	T,	 intmod(T) 	is	a	boxed	record	type	in	which	each	field	is	a	function	type.	A	value	of	the
type	 intmod(T) 	 is	 supposed	 to	 represent	 a	module	of	 integer	operations	on	 integers	 represented	by
values	of	the	type	T.	Similarly,	let	us	introduce	another	type	definition	as	follows:

abst@ype	rat	(a:t@ype)	=	(a,	a)

typedef

ratmod	(a:t@ype)	=	'{

		make=	(a,	a)	-<cloref1>	rat	a

,	fprint=	(FILEref,	rat	a)	-<cloref1>	void

,	numer=	rat	a	->	a	//	numerator

,	denom=	rat	a	->	a	//	denominator

,	neg=	(rat	a)	-<cloref1>	rat	a	//	negation

,	add=	(rat	a,	rat	a)	-<cloref1>	rat	a	//	addition

,	sub=	(rat	a,	rat	a)	-<cloref1>	rat	a	//	subtraction

,	mul=	(rat	a,	rat	a)	-<cloref1>	rat	a	//	multiplication

,	div=	(rat	a,	rat	a)	-<cloref1>	rat	a	//	division

,	cmp=	(rat	a,	rat	a)	-<cloref1>	int	//	comparison

}	//	end	of	[ratmod]

Given	a	type	T,	a	value	of	the	type	 ratmod(T) 	is	supposed	to	represent	a	module	of	rational	operations
on	rationals	represented	by	values	of	the	type	 rat(T) .	The	function	we	need	to	implement	can	now	be
given	the	following	interface:

fun{a:t@ype}	ratmod_make_intmod	(int:	intmod	a):	ratmod	a

If	applied	 to	a	given	module	of	 integer	operations,	 ratmod_make_intmod 	 returns	a	module	of	 rational
operations	such	 that	 the	 integers	 in	 the	former	and	 the	 latter	modules	have	 the	same	representation.
Therefore,	 ratmod_make_intmod 	behaves	like	a	functor	in	SML.	In	the	following	code,	let	us	implement
two	modules	 ratmod_int 	and	 ratmod_dbl 	of	 rational	operations	 in	which	 integers	are	 represented	as
values	of	the	types	 int 	and	 double ,	respectively:

staload	M	=	"libc/SATS/math.sats"

val	ratmod_int	=	let

//

val	intmod_int	=	'{

		ofint=	lam	(i)	=>	i

,	fprint=	lam	(out,	x)	=>	$extfcall	(void,	"fprintf",	out,	"%i",	x)

,	neg=	lam	(x)	=>	~x

,	add=	lam	(x,	y)	=>	x	+	y

,	sub=	lam	(x,	y)	=>	x	-	y

,	mul=	lam	(x,	y)	=>	x	*	y

,	div=	lam	(x,	y)	=>	x	/	y

,	mod=	lam	(x,	y)	=>	op	mod	(x,	y)

,	cmp=	lam	(x,	y)	=>	compare	(x,	y)

}	:	intmod	(int)	//	end	of	[val]

//

in

		ratmod_make_intmod<int>	(intmod_int)

end	//	end	of	[val]

val	ratmod_dbl	=	let

//

val	intmod_dbl	=	'{

		ofint=	lam	(i)	=>	g0i2f(i)

,	fprint=	lam	(out,	x)	=>	$extfcall	(void,	"fprintf",	out,	"%0.f",	x)

,	neg=	lam	(x)	=>	~x

,	add=	lam	(x,	y)	=>	x	+	y

,	sub=	lam	(x,	y)	=>	x	-	y

,	mul=	lam	(x,	y)	=>	x	*	y

,	div=	lam	(x,	y)	=>	$M.trunc	(x	/	y)	//	truncation

,	mod=	lam	(x,	y)	=>	$M.fmod	(x,	y)

,	cmp=	lam	(x,	y)	=>	compare	(x,	y)

}	:	intmod	(double)	//	end	of	[val]

//

in

		ratmod_make_intmod<double>	(intmod_dbl)

end	//	end	of	[ratmod_dbl]

An	implementation	of	 the	function	 ratmod_make_intmod 	 is	available	on-line	and	 there	 is	some	related
testing	code	available	on-line	as	well.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_MODULARITY/ratfun.dats
https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_MODULARITY/test_ratfun.dats

Chapter	8.	Interaction	with	C
ATS	and	C	share	precisely	the	same	native/flat/unboxed	data	representation.	As	a	consequence,	there
is	 no	 need	 for	 wrapping/unwrapping	 or	 boxing/unboxing	 when	 calling	 from	 C	 a	 function
implemented	in	ATS	or	vice	versa,	and	there	is	also	no	run-time	overhead	for	doing	so.	To	a	large
extent,	ATS	can	be	considered	a	front-end	to	C	that	is	equipped	with	a	highly	expressive	type	system
(for	 specifying	 program	 invariants)	 and	 a	 highly	 adaptable	 template	 system	 (for	 facilitating	 code
reuse).	 In	 particular,	 ATS	 can	 often	 be	 effectively	 employed	 to	 turn	 a	 large	 task	 into	 subtasks	 of
coherent	 interfaces,	 which	 can	 be	 implemented	 in	 ATS,	 C	 or	 some	 other	 langauges	 and	 then
assembled	together	to	form	a	solution	to	the	orginal	task.

As	can	be	expected,	C	code	 that	appears	directly	 in	ATS	does	not	go	 through	 the	kind	of	 rigorous
typechecking	 like	ATS	 code	 should.	 So	 it	 is	 recommended	 that	 the	 programmer	 be	 extra	 cautious
when	making	direct	use	of	C	code	inside	ATS	code.	In	practice,	my	own	experience	clearly	indicates
that	 the	 portion	 of	 C	 code	 inside	 my	 ATS	 code	 is	 highly	 likely	 to	 be	 the	 culprit	 for	 most	 of
encountered	bugs.

The	code	employed	for	illustration	in	this	chapter	plus	some	additional	code	for	testing	is	available
on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_CINTERACT/

External	Global	Names

A	 function	 declared	 in	ATS	 can	 be	 given	 a	 global	 name	 of	 C-style	 so	 as	 to	 allow	 the	 function	 to
appear	in	both	ATS	code	and	C	code.	In	particular,	the	function	can	be	implemented	in	ATS	and	called
in	C	or	vice	versa.

In	the	following	code,	we	see	that	two	functions	are	declared:

extern

fun	fact	(n:	int):	int

extern

fun	fact2	(n:	int,	res:	int):	int	=	"ext#fact2_in_c"

The	first	function	 fact 	does	not	have	a	global	name	while	 the	second	function	 fact2 	 is	assigned	a
global	name	 fact2_in_c .	The	symbol	 ext# 	indicates	that	 fact2_in_c 	is	treated	as	a	global	function	in	C
and	 its	 prototype	needs	 to	be	declared	 (via	 the	 extern 	 keyword)	 before	 it	 can	be	 called.	 If	 ext# 	 is
written	 in	 place	 of	 ext#fact2_in_c 	 in	 the	 above	 declaration,	 then	 the	 global	 name	 for	 the	 function
fact2 	in	ATS	is	assumed	to	be	same	as	the	name	of	the	function	in	ATS.	In	other	words,	writing	 ext#
in	the	above	declaration	is	equivalent	to	writing	 ext#fact2 .

Let	us	assume	that	 fact 	can	be	implemented	as	follows:

implement	fact	(n)	=	fact2	(n,	1)

When	 compiling	 this	 implementation,	 the	 ATS	 compiler	 needs	 to	 form	 function	 names	 in	 the
generated	C	 code	 to	 refer	 to	 fact 	 and	 fact2 .	 For	 the	 former,	 the	 function	 name	 in	 the	C	 code	 is
determined	 by	 a	 set	 of	 rules	 (which	 take	 into	 account	 the	 issue	 of	 namespace).	 For	 the	 latter,	 the
function	name	 is	 simply	chosen	 to	be	 the	assigned	global	name	 fact2_in_c .	As	 is	 suggested	by	 the
name	of	 fact2_in_c ,	this	function	can	be	directly	implemented	in	C	as	follows:

int

fact2_in_c	(int	n,	int	res)

{

		while	(n	>	0)	{	res	*=	n	;	n	-=	1	;	}	;	return	res	;

}

It	is	also	allowed	to	implement	 fact2 	in	ATS	directly	as	is	shown	below:

implement

fact2	(n,	res)	=	if	n	>	0	then	fact2	(n-1,	n*res)	else	res

This	implementation	of	 fact2 	can	be	called	in	C	through	the	name	 fact2_in_c .

If	both	 fact2 	and	 fact2_in_c 	are	implemented	(the	former	in	ATS	and	the	latter	in	C),	then	a	link-time
error	is	to	be	issued	to	indicate	that	 fact2_in_c 	is	implemented	repeatedly.

One	can	also	declare	 fact2 	as	follows:

extern

fun	fact2	(n:	int,	res:	int):	int	=	"mac#fact2_in_c"

The	symbol	 mac# 	indicates	that	 fact2_in_c 	is	treated	like	a	macro	in	C.	In	particular,	 fact2_in_c 	can
be	 called	 without	 its	 prototype	 being	 declared	 first.	 As	 a	 matter	 of	 fact,	 it	 may	 not	 even	 have	 a
prototype.	This	style	of	declaration	naturally	expects	 fact2_in_c 	to	be	implemented	in	C	directly.

It	is	also	allowed	to	use	 sta# 	in	place	of	 mac# :

extern

fun	fact2	(n:	int,	res:	int):	int	=	"sta#fact2_in_c"

If	declared	in	this	style,	which	only	occurs	rarely	in	practice,	 then	 fact2_in_c 	 is	 treated	like	a	static
function	in	C.

For	the	sake	of	completeness,	I	mention	as	follows	another	way	of	declaring	a	static	function:

static	fun	fact2	(n:	int,	res:	int):	int

This	style	of	declaration	is	automatically	translated	into	the	following	one:

extern	fun	fact2	(n:	int,	res:	int):	int	=	"sta#"

where	the	use	of	 sta# 	means	that	the	name	referring	to	 fact2 	in	C	is	simply	 fact2 .

External	Types	and	Values	in	ATS

External	types	and	values	can	be	readily	formed	in	ATS	to	refer	to	types	and	values	declared	in	C.

Suppose	that	there	is	a	type	in	C	of	the	name	 some_type_in_c ,	then	this	type	can	be	referred	to	in	ATS
as	 $extype"some_type_in_c" .	 For	 instance,	 type	 definitions	 are	 introduced	 in	 the	 following	 code	 for
some	external	types	in	C:

typedef	Cint	=	$extype"int"

typedef	Clint	=	$extype"long	int"

typedef	Cllint	=	$extype"long	long	int"

typedef	Cint2	=	$extype"struct{	int	x;	int	y;	}"

Suppose	that	there	is	a	value	in	C	of	the	name	 some_value_in_c ,	 then	this	value	can	be	referred	to	in
ATS	as	 $extval(T ,	"some_value_in_c") ,	where	T	is	a	type	in	ATS	assigned	to	this	value.	For	 instance,
macro	definitions	are	introduced	in	the	following	code	for	some	external	values	in	C:

macdef	NULL	=	$extval(ptr,	"0")

macdef	stdin_ref	=	$extval(FILEref,	"stdin")

macdef	stdout_ref	=	$extval(FILEref,	"stdout")

External	values	can	also	be	formed	to	refer	to	functions	in	C	as	done	in	the	following	code:

macdef	atoi	=	$extval(string	->	int,	"atoi")

macdef	atol	=	$extval(string	->	lint,	"atol")

macdef	atof	=	$extval(string	->	double,	"atof")

Note	 that	 there	 are	 other	 ways	 in	 ATS	 that	 are	 often	 more	 approriate	 for	 directly	 referring	 to
functions	 in	C.	Typically,	 the	 primary	 purpose	 of	 forming	 an	 external	 value	 in	ATS	 is	 to	 allow	 a
constant	declared	in	C	to	be	directly	referred	to	in	ATS	code.

Inclusion	of	External	Code	in	ATS

Just	 like	including	assembly	code	inside	C	code,	 it	 is	straightforward	to	include	C	code	inside	ATS
code.	For	instance,	the	example	appearing	at	the	beginning	of	this	chapter	can	be	written	as	follows	in
a	single	file:

extern

fun	fact	(n:	int):	int

extern

fun	fact2	(n:	int,	res:	int):	int	=	"ext#fact2_in_c"

implement	fact	(n)	=	fact2	(n,	1)

%{

int

fact2_in_c	(int	n,	int	res)

{

		while	(n	>	0)	{	res	*=	n	;	n	-=	1	;	}	;	return	res	;

}

%}

For	C	 code	 to	 appear	 inside	ATS	 code,	 it	 needs	 to	 enclosed	 by	 the	 symbols	 %{ 	 (opening)	 and	 %}
(closing).	 Essentially,	 whatever	 code	 appearing	 between	 these	 two	 symbols	 is	 pasted	 into	 the
generated	C	code	at	an	unspecified	position.	If	the	enclosed	code	is	intended	to	be	put	at	the	beginning
of	the	generated	C	code,	then	the	symbol	 %{^ 	should	be	used	in	place	of	 %{ .	If	 the	enclosed	code	is
intended	to	be	put	at	the	bottom	of	the	generated	C	code,	then	the	symbol	 %{$ 	should	be	used	in	place
of	 %{ .

It	is	also	allowed	to	put	C	code	between	the	symbols	 %{# 	and	 %} .	Suppose	that	 there	is	a	file	of	the
name	foo.sats	that	contains	C	code	included	in	this	manner.	If	foo.sats	is	staloaded	in	another	file

of	 the	name	foo.dats,	 then	 the	 lines	 between	 %{# 	 and	 %} 	 in	foo.sats	 are	 pasted	 into	 the	C	 code

generated	from	compiling	foo.dats.

Calling	External	Functions	in	ATS

It	 is	 straightforward	 to	make	 calls	 to	 external	 functions	 in	 ATS.	 For	 instance,	 the	 following	 code
demonstrates	a	typical	way	to	do	so:

local

extern

fun	__fprintf

		:	(FILEref,	string(*fmt*),	int,	int)	->	int	=	"mac#fprintf"

in	(*	in	of	[local]	*)

//

val	N	=	12

val	_	=	__fprintf	(stdout_ref,	"fact(%i)	=	%i\n",	N,	fact(N))

//

end	//	end	of	[local]

where	the	function	 fprintf 	(declared	in	stdio.h)	is	given	a	(local)	name	 __fprintf 	and	an	interface

appropriate	for	the	call	to	be	made.

There	 is	 also	 built-in	 support	 for	 calling	 external	 functions	 in	 ATS	 directly.	 For	 instance,	 the
following	code	does	essentially	the	same	as	the	code	presented	above:

val	N	=	12

val	_	=	$extfcall(int,	"fprintf",	stdout_ref,	"fact(%i)	=	%i\n",	N,	fact(N))

When	 $extfcall 	is	employed	to	make	an	external	function	call,	its	first	argument	is	the	return	type	of
the	call,	and	its	second	argument	is	the	name	of	the	called	function	(represented	as	a	string),	and	its
rest	of	arguments	are	the	arguments	of	the	called	function.

Unsafe	C-style	Programming	in	ATS

ATS	 is	 probably	not	 a	 programming	 language	 easy	 for	 one	 to	write	 code	 in.	While	ATS	provides
many	 features	 to	 support	 safe	 (low-level)	 programming,	 it	 may	 take	 a	 long	 time	 and	 some	 great
efforts	for	a	programmer	to	learn	and	then	master	these	features	before	he	or	she	can	make	effective
use	 of	 them.	 In	 this	 section,	 I	 would	 like	 to	 present	 some	ATS	 code	written	 in	 C-style	 that	makes
typical	use	of	certan	unsafe	programming	features	in	ATS.	This	is	a	programming	style	that	should
be	familiar	to	any	programmer	who	can	write	C	code	competently.

There	are	always	occasions	where	one	may	find	it	sensible	to	program	in	unsafe	C-style.	Sometimes,
one	 just	 wants	 to	 get	 a	 running	 implementation	 and	 then	 relies	 on	 testing	 to	 detect	 and	 fix	 bugs.
Sometimes,	 one	 simply	 does	 not	 know	 enough	 of	 ATS	 needed	 to	 implement	 a	 function	 in	 a	 safe
programming	 manner.	 This	 list	 of	 occasions	 can	 be	 readily	 extended	 as	 one	 wishes.	 I	 myself	 do
unsafe	C-style	programming	in	ATS	frequently,	and	I	see	it	as	a	necessary	skill	for	anyone	who	not
just	only	wants	to	be	able	to	write	code	in	ATS	but	also	wants	to	do	it	highly	productively.	Let	us	now
see	a	concrete	example	of	unsafe	C-style	programming	in	ATS.

Suppose	 that	 we	 want	 to	 implement	 a	 function	 for	 comparing	 two	 given	 strings	 according	 to	 the
standard	lexicographic	ordering.	Let	us	name	the	function	 strcmp 	and	give	it	the	following	interface:

fun	strcmp	(str1:	string,	str2:	string):	int

Given	 two	 strings	 str1 	 and	 str2 ,	 strcmp(str1,	 str2) 	 is	 expected	 to	 return	 1,	 -1,	 and	 0	 if	 str1 	 is
greater	 than,	 less	 than,	 and	 equal	 to	 str2 ,	 respectively.	 An	 implementation	 of	 strcmp 	 is	 given	 as
follows:

staload

UN	=	"prelude/SATS/unsafe.sats"

(*	******	******	*)

implement

strcmp	(str1,	str2)	=	let

//

fun	loop

		(p1:	ptr,	p2:	ptr):	int	=	let

//

val	c1	=	$UN.ptr0_get<uchar>	(p1)

val	c2	=	$UN.ptr0_get<uchar>	(p2)

//

in

		case+	0	of

		|	_	when	c1	>	c2	=>		1

		|	_	when	c1	<	c2	=>	~1

		|	_	(*	c1	=	c2	*)	=>

				(

						if	$UN.cast{int}(c1)	=	0

								then	0	else	loop	(ptr0_succ<uchar>	(p1),	ptr0_succ<uchar>	(p2))

						//	end	of	[if]

)

end	(*	end	of	[loop]	*)

//

in

		loop	(string2ptr(str1),	string2ptr(str2))

end	(*	end	of	[strcmp]	*)

For	a	programmer	familar	with	C,	the	above	implementation	of	 strcmp 	should	be	easily	accessible.
There	 are	 a	 variety	 of	 unsafe	 functions	 declared	 in	 unsafe.sats.	 Given	 a	 type	 T	 and	 a	 pointer	 p,
ptr0_get<T>	 (p) 	 fetches	 the	 value	 of	 the	 type	 T	 stored	 at	 the	 location	 to	which	 p	 points.	 Note	 that
ptr0_get 	is	inherently	unsafe	as	there	is	simply	no	guarantee	that	p	actually	points	to	a	valid	memory
location	where	a	value	of	 the	 type	T	 is	 stored.	The	function	 cast ,	which	 is	 also	 inherently	 unsafe,
casts	 the	 type	 of	 a	 given	 value	 into	 any	 chosen	 type.	 The	 function	 template	 ptr0_succ ,	 which	 is
declared	 in	pointer.sats,	 is	 type-safe.	Given	 a	 type	T,	 ptr0_succ<T>	 (p) 	 returns	 the	 pointer	 that	 is	 n
bytes	after	p,	where	n	equals	the	size	of	T.

Please	find	the	entire	code	for	this	example	on-line.

For	a	function	like	 strcmp ,	one	can	readily	implement	it	in	C	directly.	For	instance,	an	implementation
of	 strcmp 	 in	C,	which	 is	essentially	a	 translation	of	 the	above	 implementation	of	 strcmp 	 in	ATS,	 is
given	as	follows:

int	strcmp	(char	*p1,	char	*p2)

{

		int	res	;

		unsigned	char	c1,	c2;

		while	(1)

		{

				c1	=	*p1;	c2	=	*p2;

				if	(c1	>	c2)	{	res	=		1;	break;	}	;

				if	(c1	<	c2)	{	res	=	-1;	break;	}	;

				if	((int)c1==0)	{	res	=	0	;	break	;	}	else	{	p1++;	p2++;	}	;

		}

		return	res	;

}

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-Postiats/prelude/SATS/unsafe.sats
https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-Postiats/prelude/SATS/pointer.sats
https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_CINTERACT/strcmp.dats

However,	writing	ATS	code	 in	C-style	can	often	have	advantages	over	writing	C	code	directly.	For
instance,	there	is	direct	support	in	ATS	but	not	in	C	for	implementing	function	templates.	In	C,	one	is
essentially	forced	 to	rely	on	rather	 involved	use	of	macros	 to	 implement	function	 templates,	which
makes	 the	 code	 not	 only	 difficult	 to	 follow	 but	 also	 notoriously	 error-prone.	 Let	 us	 now	 see	 as
follows	a	function	template	implementation	in	ATS	that	is	partly	type-unsafe.

Suppose	we	want	a	function	for	copying	into	a	given	array	the	elements	stored	in	a	list.	Let	us	name
the	function	 array_copy_from_list 	and	give	it	the	following	interface:

fun{a:t@ype}

array_copy_from_list	(A:	array0(a),	xs:	list0(a)):	void

Given	a	type	T,	 array0(T) 	is	for	an	array0-value	containing	a	pointer	p	and	a	size	n	such	that	p	points
to	a	C-style	array	storing	n	elements	of	the	type	T.

For	 the	 moment,	 let	 us	 require	 that	 the	 size	 of	 the	 array	 A	 equals	 the	 length	 of	 the	 list	 xs	 when
array_copy_from_list(A,	xs) 	is	called.	Following	is	an	implementation	of	 array_copy_from_list 	in	ATS
that	makes	use	of	an	unsafe	function	(ptr0_set)	declared	in	unsafe.sats:

staload

UN	=	"prelude/SATS/unsafe.sats"

(*	******	******	*)

implement

{a}(*tmp*)

array_copy_from_list

		(A,	xs)	=	let

//

fun	loop

(

		p:	ptr,	xs:	list0	(a)

)	:	void	=

(

case+	xs	of

|	list0_nil	()	=>	()

|	list0_cons	(x,	xs)	=>	let

				val	()	=	$UN.ptr0_set<a>	(p,	x)	in	loop	(ptr0_succ<a>	(p),	xs)

		end	//	end	of	[list0_cons]

)	(*	end	of	[loop]	*)

//

in

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-Postiats/prelude/SATS/unsafe.sats

		loop	(array0_get_ref(A),	xs)

end	//	end	of	[array_copy_from_list]

Given	a	type	T,	a	pointer	p,	and	a	value	x	of	the	type	T,	 ptr0_set<T>	(p,	x) 	stores	the	value	x	at	the
location	 to	 which	 p	 points.	 Like	 ptr0_get ,	 ptr0_set 	 is	 inherently	 unsafe	 as	 there	 is	 simply	 no
guarantee	that	p	actually	points	to	a	valid	memory	location	where	a	value	of	the	type	T	can	be	stored.
The	function	 array0_get_ref ,	which	is	declared	in	array0.sats,	returns	the	pointer	to	the	C-style	array
associated	with	a	given	array0-value.

Please	find	the	entire	code	for	this	example	on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-Postiats/libats/ML/SATS/array0.sats
https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_CINTERACT/ArrayCopyFromList.dats

Exporting	Types	in	ATS	for	Use	in	C

There	is	also	support	in	ATS	for	exporting	types	to	make	them	available	for	use	in	C	directly.	In	the
following	example,	a	typedef	of	the	name	 int_and_string 	is	expected	to	be	declared	in	the	generated	C
code	for	values	that	are	assigned	the	type	 (int,	string) 	in	ATS:

extern

typedef

"int_and_string"	=	(int,	string)

Essentially,	 int_and_string 	is	defined	in	C	as	follows:

typedef

struct	{

		int	atslab__0;	void	*atslab__1;	

}	int_and_string	;

Sometimes,	we	want	to	construct	in	C	values	of	a	datatype	declared	in	ATS.	For	instance,	let	us	try	to
construct	a	value	of	the	form	 cons2(i,	d) 	in	C	for	an	integer	i	and	a	double	d,	where	 cons2 	is	a	data
constructor	associated	with	the	following	declared	datatype	 abc :

datatype	abc	=

		|	cons1	of	int	|	cons2	of	(int,	double)

Whenever	a	data	constructor	is	declared,	a	corresponding	(linear)	type	constructor	is	created	whose
name	equals	the	concatenation	of	the	name	of	the	data	constructor	and	the	string	"_pstruct".	So	in	the
case	of	 the	 above	declared	datatype	 abc ,	 the	 type	 constructors	 cons1_pstruct 	 and	 cons2_pstruct 	 are
created,	and	these	type	constructors	can	be	used	to	form	types	for	boxed	values	constructed	with	the
data	constructors	 cons1 	and	 cons2 .

In	 the	 following	declaration,	 the	 type	 cons2_pstruct(int,	 double) 	 in	ATS	 is	 exported	 to	C	under	 the
name	 cons2_node :

extern

vtypedef	"cons2_node"	=	cons2_pstruct(int,	double)

Implicitly,	 a	 typedef	 in	C	of	 the	 name	 cons2_node_ 	 is	 also	 introduced	 for	 the	 unboxed	portion	 of	 a
value	constructed	with	the	data	constructor	 cons2 .	Essentially,	we	have	the	following	generated	code
in	C:

typedef

struct	{

int	contag	;	//	constructor	tag

int	atslab__0;	double	atslab__1;	

}	cons2_node_	;

typedef	cons2_node_	*cons2_node	;

It	is	now	straightforward	to	create	a	value	of	the	form	 cons2(i,d) 	in	C	directly:

cons2_node

cons2_make

(

		int	i,	double	d

)	{

		cons2_node	p	;

		p	=	ATS_MALLOC(sizeof(cons2_node_))	;

		p->contag	=	1	;

		p->atslab__0	=	i	;

		p->atslab__1	=	d	;

		return	p	;

}	/*	end	of	[cons2_make]	*/

Note	that	the	tags	for	 cons1 	and	 cons2 	are	0	and	1,	respectively,	as	 cons1 	and	 cons2 	are	the	first	and
second	constructors	associated	with	the	datatype	 abc .

By	assigning	an	interface	to	 cons2_make 	in	ATS,	we	can	readily	check	whether	 cons2_make 	behaves	as
expected:

extern

fun	cons2_make	(int,	double):	abc	=	"mac#"

val-cons2	(1,	2.34)	=	cons2_make	(1,	2.34)

In	 general,	 it	 is	 essential	 for	 a	 pragrammer	 to	 acquire	 a	 solid	 understanding	 of	 low-level	 data
representation	 of	 a	 programming	 language	 in	 order	 to	 use	 that	 language	 in	 low-level	 systems
programming.	The	low-level	data	representation	of	ATS	can	be	readily	explained	in	terms	of	types	in
C,	making	it	straightforward,	when	needed,	to	construct	and	manipulate	ATS-values	in	C	directly.

Example:	Constructing	a	Statically	Allocated	List

In	 embedded	 programming,	 static	 memory	 allocation	 is	 often	 preferred	 due	 to	 dynamic	 memory
allocation	being	less	predictable.	I	present	as	follows	an	example	in	which	a	list	 is	constructed	with
statically	allocated	memory.	This	example	also	strongly	attests	to	ATS	and	C	being	intimately	related.

In	order	to	statically	allocate	memory	for	list-nodes,	we	need	to	first	form	a	type	for	list-nodes	so	that
we	can	inform	the	C	compiler	how	much	memory	is	needed	for	each	list-node.	In	the	following	code,
the	type	 list_node 	in	ATS	is	for	boxed	list-nodes,	and	this	type	is	exported	to	C	under	the	same	name:

//

vtypedef

list_node	=	list_cons_pstruct(int,ptr)	//	[list_node]	for	boxed	nodes

//

extern	vtypedef	"list_node"	=	list_node	//	exporting	[list_node]	to	C

//

Exporting	 list_node 	 to	 C	 also	 introduces	 (implicitly)	 a	 typedef	 list_node_ 	 in	 C	 for	 unboxed	 list-
nodes.	So	the	following	type	 list_node_ 	in	ATS	is	precisely	what	we	want	(for	unboxed	list-nodes):

typedef	list_node_	=	$extype"list_node_"	//	[list_node_]	for	unboxed	nodes

The	following	code	statically	allocates	an	array	of	list-nodes	and	then	initialize	these	nodes,	turning
the	array	into	a	list:

local

#define	N	10

(*

**	static	allocation

*)

var	nodes	=	@[list_node_][N]()

fun	loop

(

		p:	ptr,	i:	int

)	:	void	=	let

in

//

if	i	<	N	then	let

		val	res	=

		$UN.castvwtp0{list_node}(p)

		val+list_cons	(x,	xs)	=	res

		val	(

)	=	x	:=	i*i

		val	p	=	ptr_succ<list_node_>	(p)

		val	i	=	i	+	1

		val	()	=	(

				if	i	<	N	then	xs	:=	p	else	xs	:=	the_null_ptr

)	:	void	//	end	of	[val]

		val	_(*ptr*)	=	$UN.castvwtp0{ptr}((view@x,	view@xs	|	res))

in

		loop	(p,	i)

end	else	((*void*))	//	end	of	[if]

//

end	//	end	of	[loop]

in	(*	in	of	[local]	*)

val	()	=	loop	(addr@nodes,	0)

val	xs_static	=	$UN.castvwtp0{list(int,N)}((view@nodes|addr@nodes))

val	()	=	println!	("xs_static	=	",	xs_static)	//	0,	1,	4,	9,	16,	...

end	//	end	of	[local]

The	 implementation	 of	 loop 	 makes	 extensive	 use	 of	 unsafe	 C-style	 programming	 in	 ATS.	 For
someone	familiar	with	C,	it	should	be	straightforward	to	visualize	the	C	code	that	corresponds	to	this
implementation	directly.

Please	find	the	entire	code	for	this	example	on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_CINTERACT/StaticAllocList.dats

III.	Programming	with	Dependent	Types
Table	of	Contents
9.	Introduction	to	Dependent	Types
10.	Datatype	Refinement
11.	Theorem-Proving	in	ATS/LF
12.	Programming	with	Theorem-Proving

Chapter	9.	Introduction	to	Dependent	Types
The	 types	 we	 have	 encountered	 so	 far	 in	 this	 book	 are	 often	 not	 adequately	 precise	 in	 capturing
programming	invariants.	For	instance,	if	we	assign	the	type	 int 	to	both	of	integers	0	and	1,	then	we
simply	cannot	distinguish	0	from	1	at	the	level	of	types.	This	means	that	0	and	1	are	interchangeable
as	far	as	typechecking	is	concerned.	In	other	words,	we	cannot	expect	a	program	error	to	be	caught
during	 typechecking	 if	 the	 error	 is	 caused	 by	 0	 being	mistyped	 as	 1.	This	 form	of	 imprecision	 in
types	can	become	a	crippling	limitation	if	we	ever	want	to	build	a	type-based	specification	language
that	is	reasonably	expressive	for	practical	use.

Please	find	on-line	 the	code	employed	for	 illustration	in	this	chapter	plus	some	additional	code	for
testing.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_DEPTYPES/

Enhanced	Expressiveness	for	Specification

The	 primary	 purpose	 of	 introducing	 dependent	 types	 into	 the	 type	 system	 of	 ATS	 is	 to	 greatly
enhance	the	expressiveness	of	types	so	that	they	can	be	employed	to	capture	program	invariants	with
much	 greater	 precision.	 Generally	 speaking,	 dependent	 types	 are	 types	 dependent	 on	 values	 of
expressions.	For	instance,	 bool 	is	a	type	constructor	in	ATS	that	forms	a	type	 bool(b) 	when	applied	to
a	given	boolean	value	b.	As	this	type	can	only	be	assigned	to	a	boolean	expression	of	the	value	b,	it	is
often	 referred	 to	 as	 a	 singleton	 type,	 that	 is,	 a	 type	 for	 exactly	 one	 value.	Clearly,	 the	meaning	 of
bool(b) 	depends	on	the	boolean	value	b.	Similarly,	 int 	is	a	type	constructor	in	ATS	that	forms	a	type
int(i) 	when	applied	to	a	given	integer	i.	This	type	is	also	a	singleton	type	as	it	can	only	be	assigned
to	an	integer	expression	of	the	value	i.	Please	note	that	both	 bool 	and	 int 	are	overloaded	as	they	also
refer	to	(non-dependent)	types.	I	will	gradually	introduce	many	other	examples	of	dependent	types.	In
particular,	I	will	present	a	flexible	means	for	the	programmer	to	declare	dependent	datatypes.

The	statics	of	ATS	is	a	simply-typed	language,	and	the	types	in	this	language	are	called	sorts	so	as	to
avoid	some	potential	confusion	(with	 the	 types	for	dynamic	 terms).	The	following	four	 listed	sorts
are	commonly	used:

bool:	for	static	terms	of	boolean	values

int:	for	static	terms	of	integer	values

type:	for	static	terms	representing	boxed	types	(for	dynamic	terms)

t@ype:	for	static	terms	representing	unboxed	types	(for	dynamic	terms)

The	 sorts	 bool	 and	 int	 are	 classified	 as	 predicative	 sorts	 while	 the	 sorts	 type	 and	 t@ype	 are
impredicative.	A	boxed	type	is	a	static	term	of	the	sort	type	while	an	unboxed	type	is	a	static	term	of
the	sort	t@ype.	As	types,	 bool 	and	 int 	are	static	terms	of	the	sort	t@ype.	As	type	constructors,	 bool
and	 int 	are	static	terms	of	the	sorts	(bool	->	t@ype)	and	(int	->	t@ype),	respectively.	Also	note	that
the	type	constructor	 list0 	 is	of	the	sort	(t@ype	->	type),	which	 indicates	 that	 list0 	 forms	a	boxed
type	 when	 applied	 to	 an	 unboxed	 one.	 There	 are	 a	 variety	 of	 built-in	 static	 functions	 in	 ATS	 for
constructing	 static	 terms	 of	 the	 sorts	 bool	 and	 int,	 and	 I	 list	 as	 follows	 some	 of	 these	 functions
together	with	the	sorts	assigned	to	them:

~	(negation):	(int)	->	int

+	(addition):	(int,	int)	->	int

-	(subtraction):	(int,	int)	->	int

*	(multiplication):	(int,	int)	->	int

/	(division):	(int,	int)	->	int

>	(greater-than):	(int,	int)	->	bool

>=	(greater-than-or-equal-to):	(int,	int)	->	bool

<	(less-than):	(int,	int)	->	bool

<=	(less-than-or-equal-to):	(int,	int)	->	bool

==	(equal-to):	(int,	int)	->	bool

!=	(not-equal-to):	(int,	int)	->	bool

<>	(not-equal-to):	(int,	int)	->	bool

~	(boolean	negation):	(bool)	->	bool

||	(disjunction):	(bool,	bool)	->	bool

&&	(conjunction)	:	(bool,	bool)	->	bool

By	 combining	 a	 sort	 with	 one	 or	 more	 predicates,	 we	 can	 define	 a	 subset	 sort.	 For	 instance,	 the
following	 subset	 sorts	 are	 defined	 in	 the	 file	basics_pre.sats,	which	 is	 automatically	 loaded	 by	 the
ATS	compiler:

sortdef	nat	=	{a:	int	|	a	>=	0}	//	for	natural	numbers

sortdef	pos	=	{a:	int	|	a	>=	1}		//	for	positive	numbers

sortdef	neg	=	{a:	int	|	a	<=	~1}		//	for	negative	numbers

sortdef	nat1	=	{a:	nat	|	a	<	1}	//	for	0

sortdef	nat2	=	{a:	nat	|	a	<	2}	//	for	0,	1

sortdef	nat3	=	{a:	nat	|	a	<	3}	//	for	0,	1,	2

sortdef	nat4	=	{a:	nat	|	a	<	4}	//	for	0,	1,	2,	3

Note	that	predicates	can	be	sequenced	together	with	the	semicolon	symbol	(;)	to	form	a	conjunction:

sortdef	nat2	=	{a:	int	|	0	<=	a;	a	<	2}	//	for	0,	1

sortdef	nat3	=	{a:	int	|	0	<=	a;	a	<	3}	//	for	0,	1,	2

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-Postiats/prelude/basics_pre.sats

sortdef	sgn	=	{	i:int	|	~1	<=	i;	i	<=	1	}	//	for	~1,	0,	1

It	is	also	possible	to	define	the	subset	sorts	nat2	and	nat3	as	follows:

sortdef	nat2	=	{a:	int	|	a	==	0	||	a	==	1}	//	for	0,	1

sortdef	nat3	=	{a:	int	|	0	<=	a	&&	a	<=	2}	//	for	0,	1,	2

where	 || 	and	 && 	stands	for	disjunction	and	conjunction,	respectively.

In	 order	 to	 unleash	 the	 expressiveness	 of	 dependent	 types,	 we	 need	 to	 employ	 both	 universal	 and
existential	quantification	over	static	variables.	For	instance,	the	type	 Int 	in	ATS	is	defined	as	follows:

typedef	Int	=	[a:int]	int	(a)	//	for	unspecified	integers

where	 the	 syntax	 [a:int] 	 means	 existential	 quantification	 over	 a	 static	 variable	 a 	 of	 the	 sort	 int.
Essentially,	this	means	that	for	each	value	of	the	type	 Int ,	there	exists	an	integer	I	such	that	the	value
is	of	the	type	 int(I) .	Therefore,	any	value	that	can	be	given	the	type	 int 	can	also	be	given	the	type
Int .	A	type	like	 Int 	 is	often	referred	to	as	an	existentially	quantified	type.	As	another	example,	 the
type	 Nat 	in	ATS	is	defined	as	follows:

typedef	Nat	=	[a:int	|	a	>=	0]	int	(a)	//	for	natural	numbers

where	the	syntax	 [a:int	|	a	>=	0] 	means	existential	quantification	over	a	static	variable	 a 	of	the	sort
int	that	satisfies	the	constraint	 a	>=	0 .	Therefore,	each	value	of	the	type	 Nat 	can	be	assigned	the	type
int(I) 	for	some	integer	I	satisfying	I	>=	0.	Given	that	 int(I) 	 is	a	singleton	type,	the	value	equals	I
and	is	thus	a	natural	number.	This	means	that	the	type	 Nat 	is	for	natural	numbers.	The	definition	of
Nat 	can	also	be	given	as	follows:

typedef	Nat	=	[a:nat]	int	(a)	//	for	natural	numbers

where	the	syntax	 [a:nat] 	is	just	a	form	of	syntactic	sugar	that	automatically	expands	into	 [a:int	|	a
>=	0] .

At	this	point,	types	have	already	become	much	more	expressive.	For	instance,	we	could	only	assign
the	 type	 (int)	 ->	 int 	 to	 a	 function	 that	 maps	 integers	 to	 natural	 numbers	 (e.g.,	 the	 function	 that
computes	 the	 absolute	value	of	 a	given	 integer),	 but	we	can	now	do	better	by	 assigning	 it	 the	 type
(Int)	->	Nat ,	which	is	clearly	more	precise.	In	order	to	relate	at	the	level	of	types	the	return	value	of
a	function	to	its	arguments,	we	need	universal	quantification.	For	instance,	the	following	universally
quantified	type	is	for	a	function	that	returns	the	successor	of	its	integer	argument:

{i:int}	int	(i)	->	int	(i+1)

where	the	syntax	 {i:int} 	means	universal	quantification	over	a	static	variable	 i 	of	the	sort	 int 	and
the	scope	of	this	quantification	is	the	function	type	following	it.	One	may	think	that	this	function	type
is	also	a	singleton	type	as	the	only	function	of	this	type	is	the	successor	function	on	integers.	Actually,
there	are	infinitely	may	partial	functions	that	can	be	given	this	type	as	well.	For	the	successor	function
on	natural	numbers,	we	can	use	the	following	type:

{i:int	|	i	>=	0}	int	(i)	->	int	(i+1)

where	the	syntax	 {i:int	|	i	>=	0} 	means	universal	quantification	over	a	static	variable	 i 	of	the	sort
int	that	satisfies	the	constraint	 i	>=	0 .	This	type	can	also	be	written	as	follows:

{i:nat}	int	(i)	->	int	(i+1)

where	the	syntax	 {i:nat} 	automatically	expands	into	 {i:int	|	i	>=	0} .	I	list	as	follows	the	interfaces
for	some	commonly	used	functions	on	integers:

fun	g1int_neg	{i:int}	(int	i):	int	(~i)	//	negation

fun	g1int_add	{i,j:int}	(int	i,	int	j):	int	(i+j)	//	addition

fun	g1int_sub	{i,j:int}	(int	i,	int	j):	int	(i-j)	//	subtraction

fun	g1int_mul	{i,j:int}	(int	i,	int	j):	int	(i*j)	//	multiplication

fun	g1int_div	{i,j:int}	(int	i,	int	j):	int	(i/j)	//	division

fun	g1int_lt	{i,j:int}	(int	i,	int	j):	bool	(i	<	j)	//	less-than

fun	g1int_lte	{i,j:int}	(int	i,	int	j):	bool	(i	<=	j)	//	less-than-or-equal-to

fun	g1int_gt	{i,j:int}	(int	i,	int	j):	bool	(i	>	j)	//	greater-than

fun	g1int_gte	{i,j:int}	(int	i,	int	j):	bool	(i	>=	j)	//	greater-than-or-equal-to

fun	g1int_eq	{i,j:int}	(int	i,	int	j):	bool	(i	==	j)	//	equal-to

fun	g1int_neq	{i,j:int}	(int	i,	int	j):	bool	(i	!=	j)	//	not-equal-to

These	 interfaces	 are	 all	 declared	 in	 the	 file	 integer.sats,	which	 is	 automatically	 loaded	by	 the	ATS
compiler.	 Note	 that	 the	 functions	 listed	 here	 can	 all	 be	 referred	 to	 by	 their	 standard	 names:	 ~	 for
g1int_neg,	+	for	g1int_add,	-	for	g1int_sub,	*	for	g1int_mul,	 /	 for	g1int_div,	<	for	g1int_lt,	<=	for
g1int_lte,	>	for	g1int_gt,	>=	for	g1int_gte,	=	for	g1int_eq,	!=	for	g1int_neq,	<>	for	g1int_neq	(most
of	the	time).

It	 is	now	a	proper	moment	 for	me	 to	 raise	 an	 interesting	question:	What	does	 a	dependently	 typed
interface	for	the	factorial	function	look	like?	After	seeing	the	above	examples,	it	is	only	natural	for
one	to	expect	something	along	the	following	line	of	thought:

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-Postiats/prelude/SATS/integer.sats

fun	g1int_fact	{i:nat}	(i:	int	i):	int	(fact	(i))

where	fact	 is	a	static	version	of	 the	factorial	function.	The	very	problem	with	this	solution	is	 that	a
static	function	like	fact	cannot	be	defined	in	ATS.	The	statics	of	ATS	is	a	simply-typed	language	that
does	not	allow	any	recursive	means	to	be	employed	in	the	construction	of	static	terms.	This	design	is
adopted	 primarily	 to	 ensure	 that	 the	 equality	 on	 static	 terms	 can	 be	 decided	 based	 on	 a	 practical
algorithm.	As	typechecking	involving	dependent	types	essentially	turns	into	verifying	whether	a	set	of
equalities	(and	some	built-in	predicates)	on	static	terms	hold,	such	a	design	is	of	vital	importance	to
the	goal	of	supporting	practical	programming	with	dependent	types.	In	order	to	assign	an	interface	to
the	 factorial	 function	 that	 precisely	 matches	 the	 definition	 of	 the	 function,	 we	 need	 to	 employ	 a
mechanism	in	ATS	for	combining	programming	with	theorem-proving.	This	 is	a	 topic	I	will	cover
later.

Constraint-Solving	during	Typechecking

Typechecking	 in	ATS	 involves	 generating	 and	 solving	 constraints.	As	 an	 example,	 the	 code	 below
implements	the	well-known	factorial	function:

fun

fact{n:nat}

		(x:	int	n):	[r:nat]	int	r	=	if	x	>	0	then	x	*	fact	(x-1)	else	1

//	end	of	[fact]

In	this	implementation,	the	function	 fact 	is	assigned	the	following	type:

{n:nat}	int(n)	->	[r:nat]	int(r)

which	means	that	 fact 	returns	a	natural	number	r	when	applied	to	a	natural	number	n.	When	the	code
is	typechecked,	the	following	constraints	need	to	be	solved:

For	each	natural	number	n,	n	>	0	implies	n	-	1	>=	0

For	each	natural	number	n	and	each	natural	number	r1,	n	>	0	implies	n	*	r1>=	0

For	each	natural	number	n,	1	>=	0	holds.

The	 first	 constraint	 is	 generated	 due	 to	 the	 call	 fact(x-1) ,	 which	 requires	 that	 x-1 	 be	 a	 natural
number.	The	second	constraint	is	generated	in	order	to	verify	that	 x	*	fact(x-1) 	is	a	natural	number
under	the	assumption	that	 fact(x-1) 	is	a	natural	number.	The	third	constraint	is	generated	in	order	to
verify	 that	 1 	 is	 a	 natural	 number.	 The	 first	 and	 the	 third	 constraints	 can	 be	 readily	 solved	 by	 the
constraint	 solver	 in	 ATS,	 which	 is	 based	 on	 the	 Fourier-Motzkin	 variable	 elimination	 method.
However,	 the	 second	 constraint	 cannot	 be	 handled	 by	 the	 constraint	 solver	 as	 it	 is	 nonlinear:	 The
constraint	cannot	be	turned	into	a	linear	integer	programming	problem	due	to	the	occurrence	of	the
nonlinear	term	(n*r1).	While	nonlinear	constraints	cannot	be	handled	automatically	by	the	constraint
solver	in	ATS,	the	programmer	can	verify	them	by	constructing	proofs	in	ATS	explicitly.	I	will	cover
the	issue	of	explicit	proof	construction	in	an	elaborated	manner	elsewhere.

By	default,	the	constraint-solver	implemented	for	ATS/Postiats	makes	use	of	the	standard	arithmetic
of	infinite	precision.	For	the	sake	of	efficiency,	one	may	also	choose	to	use	machine-level	arithmetic
for	 solving	 integer	 constraints.	 Due	 to	 potential	 arithmetic	 overflow,	 results	 returned	 by	 the
constraint-solver	that	uses	machine-level	arithmetic	can	be	incorrect	(but	I	have	so	far	not	knowingly
encountered	such	a	situation	in	practice).

Example:	String	Processing

A	string	in	ATS	is	represented	in	the	same	manner	as	in	C:	It	is	a	sequence	of	adjacently	stored	non-
null	characters	followed	by	the	null	character,	and	its	length	is	the	number	of	non-null	characters	in
the	 sequence.	 Conventionally,	 such	 strings	 are	 often	 referred	 to	 as	 C-style	 strings,	 which	 are
notoriously	difficult	to	be	processed	safely	(as	is	clearly	indicated	by	so	many	bugs	and	breaches	due
to	misusing	such	strings).	As	a	matter	of	fact,	ATS	is	the	first	practical	programming	language	that	I
know	can	fully	support	safe	processing	of	C-style	strings.	In	ATS,	 string 	is	a	type	constructor	of	the
sort	(int)	 ->	 type.	 Given	 a	 static	 integer	 n,	 string(n) 	 is	 the	 type	 for	 strings	 of	 length	 n.	Note	 that
string 	 also	 refers	 to	 a	 non-dependent	 type	 for	 strings	 of	 unspecified	 length,	 which	 is	 basically
equivalent	to	the	type	 String 	defined	as	follows:

typedef	String	=	[n:nat]	string	(n)

The	following	two	functions	are	commonly	used	for	traversing	a	given	string:

fun	string_is_atend

		{n:int}{i:nat	|	i	<=	n}

		(str:	string	(n),	i:	size_t	(i)):	bool	(i==n)

//	end	of	[string_is_atend]

fun	string_isnot_atend

		{n:int}{i:nat	|	i	<=	n}

		(str:	string	(n),	i:	size_t	(i)):	bool	(i	<	n)

//	end	of	[string_isnot_atend]

Obviously,	either	one	of	them	can	be	implemented	based	on	the	other.	As	an	example,	the	following
code	implements	a	function	that	computes	the	length	of	a	given	string:

fun

string_length

		{n:nat}	(

		str:	string	(n)

)	:	size_t	(n)	=	let

		fun	loop	{i:nat	|	i	<=	n}	.<n-i>.

				(str:	string	n,	i:	size_t	i):	size_t	(n)	=

				if	string_isnot_atend	(str,	i)	then	loop	(str,	succ(i))	else	i

		//	end	of	[loop]

in

		loop	(str,	i2sz(0))

end	//	end	of	[string_length]

Note	that	the	function	 loop 	in	the	body	of	 string_length 	is	defined	tail-recursively,	which	can	then	be
translated	into	a	genuine	loop	in	the	generated	C	code.	Although	this	implementation	of	 string_length
looks	 fairly	 plain	 right	 now,	 it	 was	 actually	 an	 exciting	 achievement	 in	 the	 pursuit	 of	 practical
programming	with	dependent	types.

The	following	two	functions	are	for	accessing	and	updating	characters	stored	in	strings:

typedef	charNZ	=	[c:int	|	c	!=	'\000']	char	(c)

fun

string_get_at{n:int}

		{i:nat	|	i	<	n}	(str:	string	n,	i:	size_t	i):	charNZ

overload	[]	with	string_get_at

fun

string_set_char_at{n:int}

		{i:nat	|	i	<	n}	(str:	string	n,	i:	size_t	i,	c:	charNZ):	void

overload	[]	with	string_set_char_at

The	type	constructor	 char 	 is	of	the	sort	(char)	->	t@ype,	which	takes	a	static	character	c	 to	form	a
singleton	 type	 char(c) 	 for	 the	 only	 character	 equal	 to	 c.	 Thus,	 the	 type	 charNZ 	 is	 for	 all	 non-null
characters.	The	following	defined	function	 string_find 	traverses	a	string	from	left	to	right	to	check
whether	a	given	character	occurs	in	the	string:

//

typedef

sizeLt	(n:int)	=	[i:nat	|	i	<	n]	size_t	(i)

//

fun

string_find{n:nat}

(

		str:	string	n,	c0:	char

)	:	Option	(sizeLt	n)	=	let

		typedef	res	=	sizeLt	(n)

		fun	loop{i:nat	|	i	<=	n}

		(

				str:	string	n,	c0:	char,	i:	size_t	i

)	:	Option	(res)	=	let

				val	isnot	=	string_isnot_atend	(str,	i)

		in

				if	isnot	then

						if	(c0	=	str[i])	then	Some{res}(i)	else	loop	(str,	c0,	succ(i))

				else	None	()	//	end	of	[if]

		end	(*	end	of	[loop]	*)

in

		loop	(str,	c0,	i2sz(0))

end	//	end	of	[string_find]

//

If	 the	 character	 c0 	 occurs	 in	 the	 string	 str ,	 then	 a	 value	 of	 the	 form	 Some(i) 	 is	 returned,	when	 i
refers	to	the	position	of	the	first	occurrence	of	 c0 	(counting	from	left	to	right).	Otherwise,	the	value
None() 	is	returned.

There	is	some	inherent	inefficiency	in	the	implementation	of	 string_find :	A	given	position	 i 	is	first
checked	to	see	if	it	is	strictly	less	than	the	length	of	the	string	 str 	by	calling	 string_isnot_atend ,	and,
if	it	is,	the	character	stored	at	the	position	in	the	string	is	fetched	by	calling	 string_get_at .	These	two
function	calls	are	merged	into	one	in	the	following	implementation:

//

//	This	implementation	does	the	same	as	[string_find]

//	but	should	be	more	efficient.

//

fun

string_find2{n:nat}

(

		str:	string	n,	c0:	char

)	:	Option	(sizeLt	n)	=	let

//

fun

loop{i:nat	|	i	<=	n}

(

		str:	string	n

,	c0:	char,	i:	size_t	i

)	:	Option	(sizeLt	n)	=	let

		typedef	res	=	sizeLt	(n)

		val	c	=	string_test_at	(str,	i)

in

		if	c	!=	'\000'	then

		(

				if	(c0	=	c)	then	Some{res}(i)	else	loop	(str,	c0,	succ(i))

)	else	None	((*void*))	//	end	of	[if]

end	//	end	of	[loop]

//

in

		loop	(str,	c0,	i2sz(0))

end	//	end	of	[string_find2]

The	interface	for	the	function	 string_test_at 	is	given	as	follows:

fun

string_test_at

		{n:int}{i:nat	|	i	<=	n}

(

		str:	string	(n),	i:	size_t	(i)

)	:	[c:char	|	(c	!=	NUL	&&	i	<	n)	||	(c	==	NUL	&&	i	>=	n)]	char	c

//	end	of	[string_test_at]

By	checking	the	return	value	of	a	call	to	 string_test_at ,	we	can	readily	tell	whether	the	position	 i 	is
at	the	end	of	the	string	 str .

Handling	strings	safely	and	efficiently	is	a	complicated	matter	in	programming	language	design,	and
a	great	deal	of	information	about	a	programming	language	can	often	be	revealed	by	simply	studying
its	treatment	of	strings.	In	ATS,	properly	processing	C-style	strings	also	makes	essential	use	of	linear
types,	which	I	will	cover	in	another	part	of	this	book.

Example:	Binary	Search	on	Arrays

Given	a	type	T	of	the	sort	t@ype	and	a	static	integer	I	(i.e.,	a	static	term	of	the	sort	int),	 arrayref(T,	I)
is	a	boxed	type	for	arrays	of	size	I	in	which	each	stored	element	is	of	the	type	T.	Note	that	such	arrays
have	 no	 size	 information	 attached	 to	 them.	 The	 following	 interface	 is	 for	 a	 function	 template
array_make_elt 	that	can	be	called	to	create	an	array	(with	no	size	information	attached	to	it):

fun{a:t@ype}

array_make_elt{n:int}	(asz:	size_t	n,	elt:	a):	arrayref	(a,	n)

Given	a	static	integer	I,	the	type	 size_t(I) 	is	a	singleton	type	for	a	value	of	the	type	size_t	in	C	that
represents	the	integer	equal	to	I.	The	function	templates	for	reading	from	and	writing	to	an	array	cell
have	the	following	interfaces:

fun{a:t@ype}

arrayref_get_at

		{n:int}{i:nat	|	i	<	n}	(A:	arrayref	(a,	n),	i:	size_t	i):	a

overload	[]	with	arrayref_get_at

fun{a:t@ype}

arrayref_set_at

		{n:int}{i:nat	|	i	<	n}	(A:	arrayref	(a,	n),	i:	size_t	i,	x:	a):	void

overload	[]	with	arrayref_set_at

Note	 that	 these	 two	function	 templates	do	not	 incur	any	run-time	array-bounds	checking:	The	 types
assigned	to	them	guarantee	that	each	index	used	for	array	subscripting	is	always	legal,	that	is,	within
the	bounds	of	the	array	being	subscripted.

As	 a	 convincing	 example	 of	 practical	 programming	 with	 dependent	 types,	 the	 following	 code
implements	the	standard	binary	search	algorithm	on	an	ordered	array:

fun{

a:t@ype

}	bsearch_arr{n:nat}

(

		A:	arrayref	(a,	n),	n:	int	n,	x0:	a,	cmp:	(a,	a)	->	int

)	:	int	=	let

//

fun	loop

		{i,j:int	|

			0	<=	i;	i	<=	j+1;	j+1	<=	n}

(

		A:	arrayref	(a,	n),	l:	int	i,	u:	int	j

)	:<cloref1>	int	=

(

		if	l	<=	u	then	let

				val	m	=	l	+	half	(u	-	l)

				val	x	=	A[m]

				val	sgn	=	cmp	(x0,	x)

		in

				if	sgn	>=	0	then	loop	(A,	m+1,	u)	else	loop	(A,	l,	m-1)

		end	else	u	//	end	of	[if]

)	(*	end	of	[loop]	*)

//

in

		loop	(A,	0,	n-1)

end	//	end	of	[bsearch_arr]

The	function	 loop 	defined	in	the	body	of	 bsearch_arr 	searches	the	segment	of	the	array	 A 	between	the
indices	 l 	and	 u ,	inclusive.	Clearly,	the	type	assigned	to	 loop 	indicates	that	the	integer	values	i	and	j
of	the	arguments	 l 	and	 u 	must	satisfy	the	precondition	consisting	of	the	constraints	0	<=	i,	i	<=	j+1,
and	 j+1	 <=	 n,	 where	 n	 is	 the	 size	 of	 the	 array	 being	 searched.	 The	 progress	 we	 have	 made	 by
introducing	 dependent	 types	 into	ATS	 should	 be	 evident	 in	 this	 example:	We	 can	 not	 only	 specify
much	more	precisely	than	before	but	also	enforce	effectively	the	enhanced	precision	in	specification.

Please	find	on-line	 the	code	employed	for	 illustration	 in	 this	section	plus	some	additional	code	for
testing.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_DEPTYPES/bsearch_arr.dats

Termination-Checking	for	Recursive	Functions

There	is	a	mechanism	in	ATS	that	allows	the	programmer	to	supply	termination	metrics	for	checking
whether	recursively	defined	functions	are	terminating.	It	will	soon	become	clear	that	this	mechanism
of	 termination-checking	 plays	 a	 fundamental	 role	 in	 the	 design	 of	 ATS/LF,	 a	 theorem-proving
subsystem	of	ATS,	where	proofs	are	constructed	as	total	functional	programs.

A	 termination	metric	 is	 just	a	 tuple	of	natural	numbers	and	 the	standard	 lexicographic	ordering	on
natural	 numbers	 is	 used	 to	 order	 such	 tuples.	 In	 the	 following	 example,	 a	 singleton	 metric	 n 	 is
supplied	to	verify	that	the	recursive	function	 fact 	is	terminating,	where	 n 	is	the	value	of	the	integer
argument	of	 fact :

fun	fact	{n:nat}	.<n>.

		(x:	int	n):	int	=	if	x	>	0	then	x	*	fact	(x-1)	else	1

//	end	of	[fact]

Note	that	the	metric	attached	to	the	recursive	call	 fact(x-1) 	is	 n-1 ,	which	is	strictly	less	than	the	initial
metric	 n .	Essentially,	termination-checking	in	ATS	verifies	that	the	metric	attached	to	each	recursive
call	in	the	body	of	a	function	is	strictly	less	that	the	initial	metric	attached	to	the	function.

A	more	difficult	and	also	more	interesting	example	is	given	as	follows,	where	the	MacCarthy's	91-
function	is	implemented:

fun	f91	{i:int}	.<max(101-i,0)>.	(x:	int	i)

		:	[j:int	|	(i	<	101	&&	j==91)	||	(i	>=	101	&&	j==i-10)]	int	(j)	=

		if	x	>=	101	then	x-10	else	f91	(f91	(x+11))

//	end	of	[f91]

The	metric	 supplied	 to	 verify	 the	 termination	 of	 f91 	 is	 max(101-i,0) ,	 where	 i 	 is	 the	 value	 of	 the
integer	 argument	 of	 f91 .	 Please	 try	 to	 verify	 manually	 that	 this	 metric	 suffices	 for	 verifying	 the
termination	of	 f91 .

As	another	example,	the	following	code	implements	the	Ackermann's	function,	which	is	well-known
for	being	recursive	but	not	primitive	recursive:

fun	acker

		{m,n:nat}	.<m,n>.

		(x:	int	m,	y:	int	n):	Nat	=

		if	x	>	0	then

				if	y	>	0	then	acker	(x-1,	acker	(x,	y-1))	else	acker	(x-1,	1)

		else	y	+	1

//	end	of	[acker]

The	metric	supplied	for	verifying	the	termination	of	 acker 	is	a	pair	 (m,n) ,	where	 m 	and	 n 	are	values
of	the	two	integer	arguments	of	 acker .	The	metrics	attached	to	the	three	recursive	calls	to	 acker 	are,
from	left	 to	right,	 (m-1,k) 	 for	some	natural	number	k,	 (m,n-1) ,	and	 (m-1,1) .	Clearly,	 these	metrics
are	all	strictly	less	than	the	initial	metric	 (m,n) 	according	to	the	lexicographic	ordering	on	pairs	of
natural	numbers.

Termination-checking	 for	mutually	 recursive	 functions	 is	 similar.	 In	 the	 following	 example,	 isevn
and	 isodd 	are	defined	mutually	recursively:

fun	isevn

		{n:nat}	.<2*n>.

		(n:	int	n)	:	bool	=

		if	n	=	0	then	true	else	isodd	(n-1)

and	isodd

		{n:nat}	.<2*n+1>.

		(n:	int	n)	:	bool	=	not	(isevn	(n))

The	 metrics	 supplied	 for	 verifying	 the	 termination	 of	 isevn 	 and	 isodd 	 are	 2*n 	 and	 2*n+1 ,
respectively,	where	 n 	is	the	value	of	the	integer	argument	of	 isevn 	and	also	the	value	of	the	integer
argument	 of	 isodd .	 Clearly,	 if	 the	 metrics	 (n,	 0) 	 and	 (n,	 1) 	 are	 supplied	 for	 isevn 	 and	 isodd ,
respectively,	the	termination	of	these	two	functions	can	also	be	verified.	Note	that	 it	 is	required	that
the	metrics	for	mutually	recursively	defined	functions	be	tuples	of	the	same	length.

Example:	Dependent	Types	for	Debugging

Given	an	integer	x	>=	0,	the	integer	square	root	of	x	is	the	greatest	integer	i	satisfying	i	*	i	<=	x.	An
implementation	of	the	integer	square	root	function	is	given	as	follows	based	on	the	method	of	binary
search:

fun

isqrt

(

		x:	int

)	:	int	=	let

//

fun

search

(

		x:	int,	l:	int,	r:	int

)	:	int	=	let

		val	diff	=	r	-	l

in

		case+	0	of

		|	_	when	diff	>	0	=>	let

						val	m	=	l	+	(diff	/	2)

				in

						//	x	<	m	*	m	can	overflow	easily

						if	x	/	m	<	m

								then	search	(x,	l,	m)	else	search	(x,	m,	r)

						//	end	of	[if]

				end	//	end	of	[if]

		|	_	(*	diff	<=	0	*)	=>	l	(*	the	result	is	found	*)

end	//	end	of	[search]

//

in

		search	(x,	0,	x)

end	//	end	of	[isqrt]

This	implementation	passes	typechecking,	but	it	seems	to	be	looping	forever	when	tested.	Instead	of
going	into	the	standard	routine	of	debugging	(e.g.,	by	inserting	calls	to	some	printing	functions),	let
us	attempt	to	identify	the	cause	for	infinite	looping	by	proving	the	termination	of	the	function	 search
through	 the	use	of	dependent	 types.	Clearly,	 the	function	 search 	 is	assigned	 the	 function	 type	 (int,
int,	int)	->	int ,	meaning	that	 search 	takes	three	integers	as	its	arguments	and	returns	an	integer	as
its	result,	and	there	is	not	much	else	that	can	be	gathered	from	a	non-dependent	type	as	such.	However,
the	programmer	may	have	thought	that	the	function	 search 	should	possess	the	following	invariants	(if
implemented	correctly):

l	*	l	<=	x	and	x	<=	r	*	r	must	hold	when	 search(x,	l,	r) 	is	called.

Assume	l	*	l	<=	x	<	r	*	r	for	some	integers	x,	l,	r.	If	a	recursive	call	 search(x,	l1,	r1) 	for	some
integers	l1	and	r1	is	encountered	in	the	body	of	 search(x,	l,	r) ,	then	r1-l1	<	r-l	must	hold.	This
invariant	implies	that	 search 	is	terminating.

Though	the	first	invariant	can	be	captured	in	the	type	system	of	ATS,	it	is	somewhat	involved	to	do	so
due	to	the	need	for	handling	nonlinear	constraints.	Instead,	let	us	try	to	assign	 search 	 the	 following
dependent	function	type:

{x:nat}	{l,r:nat	|	l	<	r}	.<r-l>.	(int(x),	int(l),	int(r))	->	int

which	captures	 a	weaker	 invariant	 stating	 that	 l	<	 r	must	hold	when	 search(x,	 l,	 r) 	 is	 called.	The
termination	metric	 .<r-l>. 	is	provided	for	checking	that	the	function	 search 	is	terminating.	When	we
assign	 search 	the	dependent	function	type,	we	have	to	modify	its	body	as	certain	errors	are	otherwise
reported	 during	 typechecking.	 The	 following	 code	 we	 obtain	 after	 proper	modification	 does	 pass
typechecking:

fun

isqrt

{x:nat}

(

		x:	int	x

)	:	int	=	let

//

fun

search

{x,l,r:nat	|	l	<	r}	.<r-l>.

(

		x:	int	x,	l:	int	l,	r:	int	r

)	:	int	=	let

		val	diff	=	r	-	l

in

		case+	0	of

		|	_	when	diff	>	1	=>	let

						val	m	=	l	+	half(diff)

				in

						if	x	/	m	<	m

								then	search	(x,	l,	m)	else	search	(x,	m,	r)

						//	end	of	[if]

				end	//	end	of	[if]

		|	_	(*	diff	<=	1	*)	=>	l	(*	the	result	is	found	*)

end	//	end	of	[search]

//

in

		if	x	>	0	then	search	(x,	0,	x)	else	0

end	//	end	of	[isqrt]

It	 is	now	rather	clear	 that	 infinite	 looping	 in	 the	previous	 implementation	of	 search 	may	happen	 if
search(x,	l,	r) 	is	called	in	a	situaltion	where	 r-l 	equals	1	as	this	call	can	potentially	lead	to	another
call	 to	 search 	 of	 the	 same	 arguments.	 However,	 such	 a	 call	 leads	 to	 a	 type-error	 after	 search 	 is
assigned	the	aforementioned	dependent	function	type.

By	being	precise	and	being	able	to	enforce	precision	effectively,	the	programmer	will	surely	notice
that	his	or	her	need	for	run-time	debugging	is	diminishing	rapidly.

Chapter	10.	Datatype	Refinement
The	datatype	mechanism	in	ATS	is	adopted	from	ML	directly,	and	it	 is	really	a	signatory	feature	in
functional	 programming.	 However,	 the	 datatypes	 we	 have	 seen	 so	 far	 are	 not	 very	 precise	 when
employed	to	classify	values.	For	instance,	given	a	type	T,	the	type	 list0(T) 	is	for	values	representing
both	empty	and	non-empty	lists	consisting	of	elements	of	the	type	T.	Therefore,	empty	and	non-empty
lists	cannot	be	distinguished	at	the	level	of	types.	This	limitation	severely	diminishes	the	effectiveness
of	 datatypes	 of	 ML-style	 in	 capturing	 program	 invariants.	 In	 ATS,	 datatypes	 of	 ML-style	 can	 be
refined	 into	 dependent	 datatypes	 of	 DML-style,	 where	 DML	 refers	 to	 the	 programming	 language
Dependent	ML,	the	immediate	precursor	of	ATS.	With	such	refinement,	datatypes	can	classify	values
with	greatly	enhanced	precision.

The	code	employed	for	illustration	in	this	chapter	plus	some	additional	code	for	testing	is	available
on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_DEPDTREF/

Dependent	Datatypes

The	 syntax	 for	 declaring	 dependent	 datatypes	 is	 mostly	 similar	 to	 the	 syntax	 for	 declaring	 non-
dependent	datatypes:	For	instance,	the	dependent	datatype	 list 	in	ATS	is	declared	as	follows:

datatype	list	(t@ype+,	int)	=

		|	{a:t@ype}	list_nil	(a,	0)	of	()	//	[of	()]	is	optional

		|	{a:t@ype}	{n:nat}	list_cons	(a,	n+1)	of	(a,	list	(a,	n))

More	precisely,	 list 	is	declared	as	a	type	constructor	of	the	sort	(t@ype,	int)	->	type,	which	means
that	 list 	 takes	 an	 unboxed	 type	 and	 a	 static	 integer	 to	 form	 a	 boxed	 type.	 The	 keyword	 t@ype+

indicates	 that	 list 	 is	 covariant	 at	 its	 first	 parameter	 (of	 the	 sort	 t@ype),	 that	 is,	 list(T1,	 I) 	 is
considered	a	subtype	of	 list(T2,	I) 	 if	T1	is	a	subtype	of	T2.	There	is	also	the	keyword	 t@ype- 	 for
indicating	 the	 declared	 type	 constructor	 being	 contravariant	 at	 a	 parameter,	 but	 it	 is	 rarely	 used	 in
practice.	Also,	keywords	like	 type+ 	and	 type- 	are	interpreted	similarly.

There	 two	 data	 (or	 value)	 constructors	 list_nil 	 and	 list_cons 	 associated	 with	 list ,	 which	 are
declared	to	be	of	the	following	types:

list_nil	:	{a:t@ype}	()	->	list(a,	0)

list_cons	:	{a:t@ype}{n:nat}	(a,	list(a,	n))	->	list(a,	n+1)

Given	a	type	T	and	a	static	integer	I,	the	type	 list(T,	I) 	is	for	values	representing	lists	of	length	I	in
which	each	element	is	of	the	type	T.	Hence,	the	types	of	 list_nil 	and	 list_cons 	mean	 that	 list_nil
forms	a	list	of	length	0	and	 list_cons 	forms	a	list	of	length	n+1	if	applied	to	an	element	and	a	list	of
length	n.	Note	that	it	is	also	possible	to	declare	 list 	as	follows	in	a	more	concise	style:

datatype	list	(a:t@ype+,	int)	=

		|	list_nil	(a,	0)	of	()	//	[of	()]	is	optional

		|	{n:nat}	list_cons	(a,	n+1)	of	(a,	list	(a,	n))

The	use	of	 a:t@ype+ 	 (instead	of	 t@ype+)	 introduces	 implicitly	a	universal	quantifier	over	 a 	 for	 the
type	assigned	to	each	data	constructor	associated	with	the	declared	type	constructor	 list .

As	an	example	of	programming	with	dependent	datatypes,	the	following	code	implements	a	function
template	for	computing	the	length	of	a	given	list:

fun{

a:t@ype

}	list_length

		{n:nat}	.<n>.

		//	.<n>.	is	a	termination	metric

		(xs:	list	(a,	n)):	int	(n)	=	case+	xs	of

		|	list_nil	()	=>	0

		|	list_cons	(_,	xs1)	=>	1	+	list_length	(xs1)

//	end	of	[list_length]

The	type	assigned	to	the	function	 list_length 	indicates	that	the	function	takes	a	list	of	length	n	for	any
natural	 number	 n	 and	 returns	 an	 integer	 of	 value	 n.	 In	 addition,	 the	 function	 is	 verified	 to	 be
terminating.	Therefore,	 list_length 	is	guaranteed	to	implement	the	function	that	computes	the	length
of	 a	 given	 list.	 I	 now	 briefly	 explain	 how	 typechecking	 can	 be	 performed	 on	 the	 definition	 of
list_length .	Let	us	first	see	that	the	the	following	clause	typechecks:

		|	list_cons	(_,	xs1)	=>	1	+	list_length	(xs1)

What	we	need	to	verify	is	that	the	expression	on	the	righthand	side	of	the	symbol	 => 	can	be	assigned
the	type	 int(n) 	under	the	assumption	that	 xs 	matches	the	pattern	on	the	lefthand	side	of	the	symbol
=> .	 Let	 us	 assume	 that	 xs1 	 is	 of	 the	 type	 list(a,	 n1) 	 for	 some	 natural	 number	 n1 ,	 and	 this
assumption	implies	that	the	pattern	 list_cons(_,	xs1) 	 is	of	the	type	 list(a,	 n1+1) .	Clearly,	matching
xs 	 against	 the	 pattern	 list_cons(_,	 xs1) 	 generates	 a	 condition	 n=n1+1 .	 It	 is	 also	 clear	 that
list_length(xs1) 	is	of	the	type	 int(n1) 	and	thus	 1	+	list_length(xs1) 	is	of	the	type	 int(1+n1) .	As	the
condition	 n=n1+1 	 implies	 n=1+n1 ,	 1	 +	 list_length(xs1) 	 can	be	given	 the	 type	 int(n) .	 So	 this	 clause
typechecks.	Note	that	matching	 xs 	against	the	pattern	 list_nil() 	generates	the	assumption	 n=0 ,	which
implies	that	 0 	is	of	the	type	 int(n) .	Therefore,	the	following	clause	typechecks:

		|	list_nil	()	=>	0

Given	that	the	two	clauses	typecheck	properly,	the	case-expression	containing	them	can	be	assigned
the	type	 int(n) .	Therefore,	the	definition	of	 list_length 	typechecks.

As	 the	 recursive	 call	 in	 the	 body	 of	 the	 above	 defined	 function	 list_length 	 is	 not	 a	 tail-call,	 the
function	 may	 not	 be	 able	 to	 handle	 a	 long	 list	 (e.g.,	 one	 that	 contains	 1	 million	 elements).	 The
following	code	gives	another	implementation	for	computing	the	length	of	a	given	list:

fun{

a:t@ype

}	list_length{n:nat}	.<>.

		(xs:	list	(a,	n)):	int	(n)	=	let

		//	loop:	{i,j:nat}	(list	(a,	i),	int	(j))	->	int	(i+j)

		fun	loop	{i,j:nat}	.<i>.

				//	.<i>.	is	a	termination	metric

				(xs:	list	(a,	i),	j:	int	j):	int	(i+j)	=	case+	xs	of

				|	list_cons	(_,	xs1)	=>	loop	(xs1,	j+1)	|	list_nil	()	=>	j

		//	end	of	[loop]

in

		loop	(xs,	0)

end	//	end	of	[list_length]

This	 time,	 list_length 	 is	 based	 on	 a	 tail-recursive	 function	 loop 	 and	 thus	 can	 handle	 lists	 of	 any
length	 in	constant	stack	space.	Note	 that	 the	 type	assigned	to	 loop 	 indicates	 that	 loop 	 takes	a	 list	of
length	i	and	an	integer	of	value	j	for	some	natural	numbers	i	and	j	and	returns	an	integer	of	value	i+j.
Also,	 loop 	is	verified	to	be	terminating.

There	is	also	a	dependent	datatype	 option 	in	ATS	for	forming	optional	values:

datatype

option	(a:t@ype+,	bool)	=

		|	Some	(a,	true)	of	a	|	None	(a,	false)	of	()

//	end	of	[option]

As	an	example,	the	following	function	template	 list_last 	tries	to	find	the	last	element	in	a	given	list:

fun{

a:t@ype

}	list_last

		{n:nat}	.<>.

(

		xs:	list	(a,	n)

)	:	option	(a,	n	>	0)	=	let

//

fun	loop

		{n:pos}	.<n>.

(

		xs:	list	(a,	n)

)	:	a	=	let

		val+	list_cons	(_,	xs1)	=	xs

in

		case+	xs1	of

		|	list_cons	_	=>	loop	(xs1)

		|	list_nil	()	=>	let

						val+	list_cons	(x,	_)	=	xs	in	x

				end	//	end	of	[list_nil]

end	//	end	of	[loop]

//

in

		case+	xs	of

		|	list_cons	_	=>	Some	(loop	(xs))	|	list_nil	()	=>	None	()

end	//	end	of	[list_last]

The	inner	function	 loop 	is	evidently	tail-recursive	and	it	is	verified	to	be	terminating.

After	a	programmer	becomes	familar	with	 list 	and	 option ,	there	is	little	incentive	for	him	or	her	to
use	 list0 	 and	 option0 	 anymore.	 Internally,	 values	 of	 list 	 and	 list0 	 have	 exactly	 the	 same
representation	 and	 there	 are	 cast	 functions	 of	 zero	 run-time	 cost	 in	 ATS	 for	 translating	 between
values	of	 list 	and	 list0 .	The	same	applies	to	values	of	 option 	and	 option0 	as	well.

Example:	Function	Templates	on	Lists	(Redux)

I	 have	 presented	 previously	 implementation	 of	 some	 commonly	 used	 function	 templates	 on	 lists
formed	 with	 the	 constructors	 list0_nil 	 and	 list0_cons .	 This	 time,	 I	 present	 as	 follows
implementation	 of	 the	 corresponding	 function	 templates	 on	 lists	 formed	 with	 the	 constructors
list_nil 	and	 list_cons ,	which	make	it	possible	to	assign	more	accurate	types	to	these	templates.

Please	find	the	entire	code	in	this	section	plus	some	additional	code	for	testing	on-line.

Appending:	 list_append

Given	two	lists	xs	and	ys	of	the	types	 list(T,	I1) 	and	 list(T,	I2) 	for	some	type	T	and	integers	I1	and
I2,	 list_append(xs,	ys) 	returns	a	list	of	the	type	 list(T,I1+I2) 	that	is	the	concatenation	of	xs	and	ys:

fun{

a:t@ype

}	list_append

		{m,n:nat}	.<m>.

(

		xs:	list	(a,	m),	ys:	list	(a,	n)

)	:	list	(a,	m+n)	=	case+	xs	of

		|	list_nil	()	=>	ys

		|	list_cons	(x,	xs)	=>	list_cons	(x,	list_append	(xs,	ys))

//	end	of	[list_append]

Clearly,	this	implementation	of	 list_append 	is	not	tail-recursive.

Reverse	Appending:	 list_reverse_append

Given	two	lists	xs	and	ys	of	the	type	 list(T,	I1) 	and	 list(T,	I2) 	for	some	type	T	and	integers	I1	and
I2,	 list_reverse_append(xs,	ys) 	returns	a	list	of	the	type	 list(T,	I1+I2) 	that	is	the	concatenation	of	the
reverse	of	xs	and	ys:

fun{

a:t@ype

}	list_reverse_append

		{m,n:nat}	.<m>.

(

		xs:	list	(a,	m),	ys:	list	(a,	n)

)	:	list	(a,	m+n)	=	case+	xs	of

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_DEPDTREF/listfuns.dats

		|	list_nil	()	=>	ys

		|	list_cons	(x,	xs)	=>

						list_reverse_append	(xs,	list_cons	(x,	ys))

//	end	of	[list_reverse_append]

Clearly,	this	implementation	of	 list_reverse_append 	is	tail-recursive.

Reversing:	 list_reverse

Given	a	list	xs,	 list_reverse(xs) 	returns	the	reverse	of	xs,	which	is	of	the	same	length	as	xs:

fun{a:t@ype}

list_reverse{n:nat}	.<>.	//	defined	non-recursively

		(xs:	list	(a,	n)):	list	(a,	n)	=	list_reverse_append	(xs,	list_nil)

//	end	of	[list_reverse]

Mapping:	 list_map

Given	a	list	xs	of	the	type	 list(T1,	I) 	for	some	type	T1	and	integer	I	and	a	closure	function	f	of	the
type	 T1	-<cloref1>	T2 	for	some	T2,	 list_map(xs) 	returns	a	list	ys	of	the	type	 list(T2,	I)) :

fun{

a:t@ype}

{b:t@ype

}	list_map

		{n:nat}	.<n>.

(

		xs:	list	(a,	n),	f:	a	-<cloref1>	b

)	:	list	(b,	n)	=	case+	xs	of

		|	list_nil	()	=>	list_nil	()

		|	list_cons	(x,	xs)	=>	list_cons	(f	x,	list_map	(xs,	f))

//	end	of	[list_map]

Each	 element	 y	 in	 ys	 equals	 f(x),	 where	 x	 is	 the	 corresponding	 element	 in	 xs.	 Clearly,	 this
implementation	of	 list_map 	is	not	tail-recursive.

Zipping:	 list_zip

Given	 two	 lists	xs	 and	ys	of	 the	 types	 list(T1,	 I) 	and	 list(T2,	 I) 	 for	 some	 types	T1	 and	T2	 and

integer	I,	respectively,	 list_zip(xs,	ys) 	returns	a	list	zs	of	the	type	 list((T1,T2),	I) .

fun{

a,b:t@ype

}	list_zip

		{n:nat}	.<n>.

(

		xs:	list	(a,	n),	ys:	list	(b,	n)

)	:	list	((a,	b),	n)	=

(

		case+	(xs,	ys)	of

		|	(list_cons	(x,	xs),

					list_cons	(y,	ys))	=>

						list_cons	((x,	y),	list_zip	(xs,	ys))

		|	(list_nil	(),	list_nil	())	=>	list_nil	()

)	(*	end	of	[list_zip]	*)

Each	element	z	in	zs	equals	the	pair	(x,	y),	where	x	and	y	are	the	corresponding	elements	in	xs	and	ys,
respectively.	Clearly,	this	implementation	of	 list_zip 	is	not	tail-recursive.

Zipping	with:	 list_zipwith

Given	 two	 lists	xs	 and	ys	of	 the	 types	 list(T1,	 I) 	and	 list(T2,	 I) 	 for	 some	 types	T1	 and	T2	 and
integer	I,	respectively,	and	a	closure	function	f	of	the	type	 (T1,	T2)	-<cloref1>	T3 	for	some	type	T3,
list_zipwith(xs,	ys,	f) 	returns	a	list	zs	of	the	type	 list(T3,	I) :

fun{

a,b:t@ype

}{c:t@ype

}	list_zipwith

		{n:nat}	.<n>.

(

		xs:	list	(a,	n)

,	ys:	list	(b,	n)

,	f:	(a,	b)	-<cloref1>	c

)	:	list	(c,	n)	=	case+	(xs,	ys)	of

		|	(list_cons	(x,	xs),

					list_cons	(y,	ys))	=>

						list_cons	(f	(x,	y),	list_zipwith	(xs,	ys,	f))

		|	(list_nil	(),	list_nil	())	=>	list_nil	()

//	end	of	[list_zipwith]

Each	 element	 z	 in	 zs	 equals	 f(x,	 y),	 where	 x	 and	 y	 are	 the	 corresponding	 elements	 in	 xs	 and	 ys,

respectively.	Clearly,	this	implementation	of	 list_zipwith 	is	not	tail-recursive.

Example:	Mergesort	on	Lists	(Redux)

I	 have	 previously	 presented	 an	 implementation	 of	 mergesort	 on	 lists	 that	 are	 formed	 with	 the
constructors	 list0_nil 	and	 list0_cons .	In	this	section,	I	give	an	implementation	of	mergesort	on	lists
formed	 with	 the	 constructors	 list_nil 	 and	 list_cons .	 This	 implementation	 is	 based	 on	 the	 same
algorithm	as	the	previous	one	but	it	assigns	a	type	to	the	implemented	sorting	function	that	guarantees
the	function	to	be	length-preserving,	that	is,	the	function	always	returns	a	list	of	the	same	length	as	the
list	it	sorts.

The	following	defined	function	 merge 	combines	two	ordered	list	(according	to	a	given	ordering)	into
a	single	ordered	list:

//

typedef	lte	(a:t@ype)	=	(a,	a)	->	bool

//

fun{

a:t@ype

}	merge

		{m,n:nat}	.<m+n>.

(

		xs0:	list	(a,	m),	ys0:	list	(a,	n),	lte:	lte	a

)	:	list	(a,	m+n)	=

		case+	xs0	of

		|	list_nil	()	=>	ys0

		|	list_cons	(x,	xs1)	=>

				(

				case+	ys0	of

				|	list_nil	()	=>	xs0

				|	list_cons	(y,	ys1)	=>

								if	x	\lte	y

										then	list_cons	(x,	merge	(xs1,	ys0,	lte))

										else	list_cons	(y,	merge	(xs0,	ys1,	lte))

								//	end	of	[if]

)	//	end	of	[list_cons]

//	end	of	[merge]

//

Clearly,	 the	 type	assigned	 to	 merge 	 indicates	 that	 the	 function	 returns	a	 list	whose	 length	equals	 the
sum	of	the	lengths	of	the	two	input	lists.	Note	that	a	termination	metric	is	present	for	verifying	that
merge 	is	a	terminating	function.

The	following	defined	function	 mergesort 	mergesorts	a	list	according	to	a	given	ordering:

fun{

a:t@ype

}	mergesort{n:nat}

(

		xs:	list	(a,	n),	lte:	lte	a

)	:	list	(a,	n)	=	let

		fun	msort

				{n:nat}	.<n,n>.

		(

				xs:	list	(a,	n),	n:	int	n,	lte:	lte	a

)	:	list	(a,	n)	=

				if	n	>=	2

						then	split	(xs,	n,	lte,	half(n),	list_nil)	else	xs

				//	end	of	[if]

		//	end	of	[msort]

		and	split

				{n:int	|	n	>=	2}{i:nat	|	i	<=	n/2}	.<n,i>.

		(

				xs:	list	(a,	n-n/2+i)

		,	n:	int	n,	lte:	lte	a,	i:	int	i,	xsf:	list	(a,	n/2-i)

)	:	list	(a,	n)	=

				if	i	>	0	then	let

						val+	list_cons	(x,	xs)	=	xs

				in

						split	(xs,	n,	lte,	i-1,	list_cons	(x,	xsf))

				end	else	let

						val	n2	=	half(n)

						val	xsf	=	list_reverse<a>	(xsf)	//	make	sorting	stable!

						val	xsf	=	list_of_list_vt	(xsf)	//	linear	list	->	nonlinear	list

						val	xsf	=	msort	(xsf,	n2,	lte)	and	xs	=	msort	(xs,	n-n2,	lte)

				in

						merge	(xsf,	xs,	lte)

				end	//	end	of	[if]

		//	end	of	[split]

		val	n	=	list_length<a>	(xs)

in

		msort	(xs,	n,	lte)

end	//	end	of	[mergesort]

The	type	assigned	to	 mergesort 	 indicates	 that	 mergesort 	 returns	a	 list	of	 the	same	 length	as	 its	 input
list.	The	two	inner	functions	 msort 	and	 split 	are	defined	mutually	 recursively,	and	 the	 termination
metrics	 for	 them	 are	 pairs	 of	 natural	 numbers	 that	 are	 compared	 according	 to	 the	 standard
lexicographic	 ordering	 on	 integer	 sequences.	 The	 type	 assigned	 to	 msort 	 clearly	 indicates	 that	 its
integer	argument	 is	 required	 to	be	 the	 length	of	 its	 list	 argument,	 and	a	mismatch	between	 the	 two

surely	 results	 in	 a	 type-error.	 The	 type	 assigned	 to	 split 	 is	 particularly	 informative,	 depicting	 a
relation	 between	 the	 arguments	 and	 the	 return	 value	 of	 the	 function	 that	 can	 be	 of	 great	 help	 for
someone	 trying	 to	 understand	 the	 code.	 The	 function	 list_reverse 	 returns	 a	 linear	 list	 that	 is	 the
reverse	of	its	input,	and	the	cast	function	 list_of_list_vt 	turns	a	linear	list	into	a	nonlinear	one	(while
incuring	no	cost	at	run-time).	I	will	explain	what	linear	lists	are	elsewhere.

Please	find	the	entire	code	in	this	section	plus	some	additional	code	for	testing	on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_DEPDTREF/mergesort.dats

Sequentiality	of	Pattern	Matching

In	ATS,	pattern	matching	 is	performed	sequentially	at	 run-time.	In	other	words,	a	clause	 is	selected
only	if	a	given	value	matches	the	pattern	guard	associated	with	this	clause	but	the	value	fails	to	match
the	 pattern	 associated	 with	 any	 clause	 ahead	 of	 it.	 Naturally,	 one	 may	 expect	 that	 the	 following
implementation	of	 list_zipwith 	also	typechecks:

fun{

a1,

a2:t@ype

}{b:t@ype

}	list_zipwith

		{n:nat}

(

		xs1:	list	(a1,	n)

,	xs2:	list	(a2,	n)

,	f:	(a1,	a2)	-<cloref1>	b

)	:	list	(b,	n)	=

		case+	(xs1,	xs2)	of

		|	(list_cons	(x1,	xs1),

					list_cons	(x2,	xs2))	=>

				(

						list_cons{b}(f	(x1,	x2),	list_zipwith<a1,a2>	(xs1,	xs2,	f))

)

		|	(_,	_)	=>	list_nil	(*void*)

//	end	of	[list_zipwith]

This,	however,	is	not	the	case.	In	ATS,	typechecking	clauses	is	done	nondeterministically	(rather	than
sequentially).	In	this	example,	the	second	clause	fails	to	typecheck	as	it	is	done	without	the	assumption
of	 the	given	pair	 (xs1,	 xs2) 	 failing	 to	match	 the	pattern	guard	associated	with	 the	 first	clause.	The
second	clause	can	be	modified	slightly	as	follows	to	pass	typechecking:

		|	(_,	_)	=>>	list_nil	()

The	use	of	the	symbol	 =>> 	(in	place	of	 =>)	 indicates	to	the	typechecker	 that	 this	clause	needs	to	be
typechecked	under	 the	 sequentiality	assumption	 that	 the	given	value	matching	 it	does	not	match	 the
pattern	guards	associated	with	any	previous	clauses.	Therefore,	when	the	modified	second	clause	is
typechecked,	it	can	be	assumed	that	the	pair	 (xs1,	xs2) 	matching	the	pattern	 (_,	_) 	must	match	one	of
the	following	three	patterns:

(list_cons	(_,	_),	list_nil	())

(list_nil	(),	list_cons	(_,	_))

(list_nil	(),	list_nil	())

Given	 that	 xs1 	 and	 xs2 	 are	 of	 the	 same	 length,	 the	 typechecker	 can	 readily	 infer	 that	 (xs1,	 xs2)

cannot	match	either	of	 the	 first	 two	patterns.	After	 these	 two	patterns	are	 ruled	out,	 typechecking	 is
essentially	done	as	if	the	second	clause	was	written	as	follows:

		|	(list_nil	(),	list_nil	())	=>	list_nil	()

One	may	be	wondering	why	typechecking	clauses	is	not	required	to	be	done	sequentially	by	default.
The	simple	reason	is	that	this	requirement,	if	fully	enforced,	can	have	a	great	negative	impact	on	the
efficiency	of	typechecking.	Therefore,	it	 is	a	reasonable	design	to	provide	the	programmer	with	an
explict	means	 to	 occasionally	make	 use	 of	 the	 sequentiality	 assumption	 needed	 for	 typechecking	 a
particular	clause.

Example:	Functional	Red-Black	Trees

A	red-black	tree	is	defined	as	a	binary	tree	such	that	each	node	in	it	is	colored	red	or	black	and	every
path	from	the	root	to	a	leaf	has	the	same	number	of	black	nodes	while	containing	no	occurrences	of
two	red	nodes	in	a	row.	Clearly,	the	length	of	a	longest	path	in	each	red-black	tree	is	bounded	by	2
times	the	length	of	a	shortest	path	in	it.	Therefore,	red-black	trees	are	a	family	of	balanced	trees.	The
number	of	black	nodes	occurring	on	each	path	 in	a	 red-black	 tree	 is	often	 referred	 to	as	 the	black
height	of	the	tree.

Formally,	a	datatype	precisely	for	red-black	trees	can	be	declared	in	ATS	as	follows:

#define	BLK	0

#define	RED	1

sortdef	clr	=	{c:nat	|	c	<=	1}

datatype	rbtree

		(a:t@ype+,	int(*clr*),	int(*bh*))	=

		|	rbtree_nil	(a,	BLK,	0)

		|	{c,cl,cr:clr	|	cl	<=	1-c;	cr	<=	1-c}	{bh:nat}

				rbtree_cons	(a,	c,	bh+1-c)	of	(int	c,	rbtree	(a,	cl,	bh),	a,	rbtree	(a,	cr,	bh))

//	end	of	[rbtree]

The	color	of	a	tree	is	the	color	of	its	root	node	or	is	black	if	the	tree	is	empty.	Given	a	type	T,	a	color
C	 (represented	 by	 a	 integer)	 and	 an	 integer	 BH,	 the	 type	 rbtree(T,	 C,	 BH) 	 is	 for	 red-black	 trees
carrying	elements	of	the	type	T	that	is	of	the	color	C	and	the	black	height	BH.

When	implementing	various	operations	(such	as	insertion	and	deletion)	on	a	red-black	tree,	we	often
need	 to	 first	 construct	 intermediate	 trees	 that	 contain	 color	 violations	 caused	 by	 a	 red	 node	 being
followed	by	another	red	node	and	then	employ	tree	rotations	to	fix	such	violations.	This	need	makes
the	above	datatype	 rbtree 	too	rigid	as	it	cannot	be	assigned	to	any	intermediate	trees	containing	color
violations.	To	address	this	issue,	we	can	declare	 rbtree 	as	follows:

datatype	rbtree

(

		a:t@ype+

,	int	//	color

,	int	//	black	height

,	int	//	violations

)	=

		|	rbtree_nil	(a,	BLK,	0,	0)	of	()

		|	{c,cl,cr:clr}{bh:nat}{v:int}

						{c==BLK	&&	v==0	||	c	==	RED	&&	v==cl+cr}

				rbtree_cons	(a,	c,	bh+1-c,	v)	of

				(

						int	c,	rbtree0	(a,	cl,	bh),	a,	rbtree0	(a,	cr,	bh)

)	(*	end	of	[rbtree_cons]	*)

//	end	of	[rbtree]

where	rbtree0	(a:t@ype,	c:int,	bh:int)	=	rbtree	(a,	c,	bh,	0)

We	count	each	occurrence	of	two	red	nodes	in	a	row	as	one	color	violation.	Given	a	type	T,	a	color	C
(represented	by	a	integer),	an	integer	BH	and	an	integer	V,	the	type	 rbtree(T,	C,	BH,	V) 	 is	 for	 trees
carrying	elements	of	the	type	T	that	is	of	the	color	C	and	the	black	height	BH	and	contains	exactly	V
color	violations.	Therefore,	the	type	 rbtree(T,	C,	BH,	0) 	 is	for	valid	red-black	trees	(containing	no
color	violations).

Given	 a	 tree	 containing	 at	 most	 one	 color	 violation,	 an	 element	 and	 another	 tree	 containing	 no
violations,	the	following	operation	constructs	a	valid	red-black	tree:

fn{

a:t@ype

}	insfix_l	//	right	rotation	for	fixing	left	insertion

		{cl,cr:clr}	{bh:nat}	{v:nat}	(

		tl:	rbtree	(a,	cl,	bh,	v),	x0:	a,	tr:	rbtree	(a,	cr,	bh,	0)

)	:	[c:clr]	rbtree0	(a,	c,	bh+1)	=	let

		#define	B	BLK;	#define	R	RED;	#define	cons	rbtree_cons

in

		case+	(tl,	x0,	tr)	of

		|	(cons	(R,	cons	(R,	a,	x,	b),	y,	c),	z,	d)	=>

						cons	(R,	cons	(B,	a,	x,	b),	y,	cons	(B,	c,	z,	d))	//	shallow	rot

		|	(cons	(R,	a,	x,	cons	(R,	b,	y,	c)),	z,	d)	=>

						cons	(R,	cons	(B,	a,	x,	b),	y,	cons	(B,	c,	z,	d))	//	deep	rotation

		|	(a,	x,	b)	=>>	cons	(B,	a,	x,	b)

end	//	end	of	[insfix_l]

By	simply	reading	the	interface	of	 insfix_l ,	we	can	see	that	the	two	tree	arguments	are	required	to	be
of	the	same	black	height	bh	for	some	natural	number	bh	and	the	returned	tree	is	of	the	black	height
bh+1.

The	following	operation	 insfix_r 	is	just	the	mirror	image	of	 insfix_l :

fn{

a:t@ype

}	insfix_r	//	left	rotation	for	fixing	right	insertion

		{cl,cr:clr}	{bh:nat}	{v:nat}	(

		tl:	rbtree	(a,	cl,	bh,	0),	x0:	a,	tr:	rbtree	(a,	cr,	bh,	v)

)	:	[c:clr]	rbtree0	(a,	c,	bh+1)	=	let

		#define	B	BLK;	#define	R	RED;	#define	cons	rbtree_cons

in

		case+	(tl,	x0,	tr)	of

		|	(a,	x,	cons	(R,	b,	y,	cons	(R,	c,	z,	d)))	=>

						cons	(R,	cons	(B,	a,	x,	b),	y,	cons	(B,	c,	z,	d))	//	shallow	rot

		|	(a,	x,	cons	(R,	cons	(R,	b,	y,	c),	z,	d))	=>

						cons	(R,	cons	(B,	a,	x,	b),	y,	cons	(B,	c,	z,	d))	//	deep	rotation

		|	(a,	x,	b)	=>>	cons	(B,	a,	x,	b)

end	//	end	of	[insfix_r]

The	preparation	for	implementing	insertion	on	a	red-black	tree	is	all	done	by	now,	and	we	are	ready
to	see	an	 implementation	of	 insertion	guaranteeing	 that	 the	 tree	obtained	from	inserting	an	element
into	a	given	red-black	tree	is	always	a	valid	red-black	tree	itself.	This	guarantee	is	precisely	captured
in	the	following	interface	for	insertion:

extern

fun{

a:t@ype

}	rbtree_insert

		{c:clr}	{bh:nat}

(

		t:	rbtree0	(a,	c,	bh),	x0:	a,	cmp:	cmp	a

)	:	[bh1:nat]	rbtree0	(a,	BLK,	bh1)

Interestingly,	 this	 interface	 also	 implies	 that	 the	 tree	 returned	 by	 a	 call	 to	 rbtree_insert 	 is	 always
black.	The	code	presented	below	gives	an	implementation	of	 rbtree_insert :

implement{a}

rbtree_insert

		(t,	x0,	cmp)	=	let

//

#define	B	BLK

#define	R	RED

#define	nil	rbtree_nil

#define	cons	rbtree_cons

//

fun	ins

		{c:clr}{bh:nat}	.<bh,c>.

(

		t:	rbtree0	(a,	c,	bh),	x0:	a

)	:

[

		cl:clr;v:nat	|	v	<=	c

]	rbtree	(a,	cl,	bh,	v)	=

(

		case+	t	of

		|	nil	((*void*))	=>

						cons{..}{..}{..}{0}	(R,	nil,	x0,	nil)

		|	cons	(c,	tl,	x,	tr)	=>	let

						val	sgn	=	compare	(x0,	x,	cmp)

				in

						if	sgn	<	0	then	let

								val	[cl,v:int]	tl	=	ins	(tl,	x0)

						in

								if	c	=	B	then	insfix_l	(tl,	x,	tr)

										else	cons{..}{..}{..}{cl}	(R,	tl,	x,	tr)

								//	end	of	[if]

						end	else	if	sgn	>	0	then	let

								val	[cr,v:int]	tr	=	ins	(tr,	x0)

						in

								if	c	=	B	then	insfix_r	(tl,	x,	tr)

										else	cons{..}{..}{..}{cr}	(R,	tl,	x,	tr)

								//	end	of	[if]

						end	else	t	//	end	of	[if]

				end	//	end	of	[cons]

)	(*	end	of	[ins]	*)

//

val	t	=	ins	(t,	x0)

//

in

		case+	t	of	cons	(R,	tl,	x,	tr)	=>	cons	(B,	tl,	x,	tr)	|	_	=>>	t

end	//	end	of	[rbtree_insert]

Note	that	the	type	assigned	to	the	inner	function	 ins 	is	so	informative	that	it	literally	gives	an	formal
explanation	 about	 the	 way	 in	 which	 insertion	 works	 on	 a	 red-black	 tree.	 Many	 a	 programmer
implements	red-black	trees	by	simply	following	an	algorithm	written	in	some	format	of	pseudo	code
while	having	little	understanding	about	the	innerworkings	of	the	algorithm.	For	instance,	if	the	above
inner	function	 ins 	is	implemented	in	C,	few	programmers	are	likely	to	see	that	the	function	always
maintain	 the	 black	 height	 of	 a	 given	 red-black	 tree	 after	 insertion	 but	 may	 introduce	 one	 color
violation	if	the	root	of	the	tree	is	red.	On	the	other	hand,	knowing	this	invariant	is	essential	to	gaining
a	thorough	understanding	of	the	insertion	algorithm	on	red-black	trees.

The	insertion	operation	implemented	above	does	not	insert	an	element	if	it	is	already	in	the	given	red-
black	tree.	It	may	be	desirable	to	require	that	the	operation	inform	the	caller	if	such	a	case	occurs.	For
instance,	an	exception	can	be	raised	for	this	purpose.	An	alternative	is	to	give	 rbtree_insert 	a	call-by-

reference	argument	so	that	a	flag	can	be	returned	in	it	to	indicate	whether	the	element	to	be	inserted	is
actually	inserted.	I	will	explain	elsewhere	what	call-by-reference	is	and	how	it	is	supported	in	ATS.

Often	deleting	an	element	from	a	binary	search	tree	is	significantly	more	difficult	to	implement	than
inserting	one.	This	is	especially	so	in	the	case	of	a	red-black	tree.	I	refer	the	interested	reader	to	the
libats	 library	of	ATS	 for	 some	code	 implementing	a	deletion	operation	on	 red-black	 trees	 that	 can
guarantee	based	on	types	each	tree	returned	by	the	operation	being	a	valid	red-black	tree	(containing
no	color	violations).

Please	find	the	entire	code	in	this	section	plus	some	additional	code	for	testing	on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_DEPDTREF/rbtree.dats

Chapter	11.	Theorem-Proving	in	ATS/LF
Within	the	ATS	programming	language	system,	there	is	a	component	named	ATS/LF	for	supporting
(interactive)	therorem-proving.	In	ATS/LF,	theorem-proving	is	done	by	constructing	proofs	as	total
functional	programs.	 It	will	soon	become	clear	 that	 this	style	of	 theorem-proving	can	be	combined
cohesively	with	 functional	 programming	 to	 yield	 a	 programming	 paradigm	 that	 is	 considered	 the
signature	of	ATS:	programming	with	theorem-proving.	Moreover,	ATS/LF	can	be	employed	to	encode
various	deduction	systems	and	their	meta-properties.

Please	find	on-line	 the	code	employed	for	 illustration	in	this	chapter	plus	some	additional	code	for
testing.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_THMPRVING/

Encoding	Relations	as	Dataprops

In	 the	statics	of	ATS,	 there	 is	a	built-in	sort	prop	 for	 static	 terms	 that	 represent	 types	 for	proofs.	A
static	term	of	the	sort	prop	can	also	be	referred	to	as	a	type	or	more	accurately,	a	prop-type	or	just	a
prop.	A	dataprop	can	be	declared	in	a	manner	that	is	mostly	similar	to	the	declaration	of	a	datatype.
For	instance,	a	prop	construct	 FIB 	is	introduced	in	the	following	dataprop	declaration:

dataprop

FIB(int,	int)	=

		|	FIB0(0,	0)	of	()	//	[of	()]	can	be	dropped

		|	FIB1(1,	1)	of	()	//	[of	()]	can	be	dropped

		|	{n:nat}{r0,r1:int}

				FIB2(n+2,	r0+r1)	of	(FIB(n,	r0),	FIB(n+1,	r1))

//	end	of	[FIB]

The	sort	assigned	to	 FIB 	is	(int,	int)	->	prop,	indicating	that	 FIB 	 takes	two	static	integers	to	form	a
prop-type.	There	 are	 three	data	 (or	 proof)	 constructors	 associated	with	 FIB :	 FIB0 ,	 FIB1 	 and	 FIB2 ,
which	are	assigned	the	following	function	types	(or	more	accurately,	prop-types):

FIB0 :	 ()	->	FIB(0,	0)

FIB1 :	 ()	->	FIB(1,	1)

FIB2 :	 {n:nat}{r0,r1:int}	(FIB(n,	r0),	FIB(n+1,	r1))	->	FIB(n+2,	r0+r1)

Given	a	natural	number	n	and	an	integer	r,	it	should	be	clear	that	 FIB(n,	r) 	encodes	the	relation	fib(n)
=	r,	where	fib	is	defined	by	the	following	three	equations:

fib(0)	=	0,	and

fib(1)	=	1,	and

fib(n+2)	=	fib(n)	+	fib(n+1)	for	n	>=	2.

A	proof	value	of	the	prop	 FIB(n,	r) 	can	be	constructed	if	and	only	if	fib(n)	equals	r.	For	instance,	the
proof	value	 FIB2(FIB0(),	FIB1()) 	is	assigned	the	prop	 FIB(2,	1) ,	attesting	to	fib(2)	equaling	1.

As	 another	 example	 of	 dataprop,	 the	 following	 declaration	 introduces	 a	 prop	 constructor	 MUL

together	with	three	associated	proof	constructors:

dataprop	MUL(int,	int,	int)	=

		|	{n:int}	MULbas(0,	n,	0)	of	()

		|	{m:nat}{n:int}{p:int}

				MULind(m+1,	n,	p+n)	of	MUL(m,	n,	p)

		|	{m:pos}{n:int}{p:int}

				MULneg(~(m),	n,	~(p))	of	MUL(m,	n,	p)

//	end	of	[MUL]

Given	three	integers	m,	n	and	p,	the	prop	 MUL(m,	n,	p) 	encodes	the	relation	m*n	=	p.	As	for	 MULbas ,
MULind 	and	 MULneg ,	they	correspond	to	the	following	three	equations,	respectively:

0*n	=	0	for	every	integer	n,	and

(m+1)*n	=	m*n	+	n	for	each	pair	of	integers	m	and	n,	and

(~m)*n	=	~(m*n)	for	each	pair	of	integers	m	and	n.

In	 other	 words,	 the	 dataprop	 declaration	 for	 MUL 	 encodes	 the	 relation	 that	 represents	 the	 standard
multiplication	function	on	integers.

It	can	be	readily	noticed	that	the	process	of	encoding	a	functional	relation	(i.e.,	a	relation	representing
a	function)	as	a	dataprop	is	analogous	to	implementing	a	function	in	a	logic	programming	language
such	as	Prolog.

Constructing	Proofs	as	Total	Functions

Theorems	are	represented	as	types	(or	more	accurately,	props)	in	ATS/LF.	For	instance,	the	following
prop	states	that	integer	multiplication	is	commutative:

{m,n:int}{p:int}	MUL(m,	n,	p)	-<prf>	MUL(n,	m,	p)

Constructing	 a	 proof	 for	 a	 theorem	 in	 ATS/LF	means	 implementing	 a	 total	 value	 (which	 is	 most
likely	to	be	a	total	function)	of	the	type	that	is	the	encoding	of	the	theorem	in	ATS/LF,	where	being
total	 means	 being	 pure	 and	 terminating.	 Please	 note	 that	 this	 style	 of	 theorem-proving	 may	 seem
rather	peculiar	to	those	who	have	never	tried	it	before.

As	a	simple	introductory	example,	let	us	first	construct	a	proof	function	in	ATS/LF	that	is	given	the
following	interface:

prfun	mul_istot	{m,n:int}	():	[p:int]	MUL(m,	n,	p)

The	keyword	 prfun 	 indicates	 that	 the	 interface	 is	 for	 a	 proof	 function	 (in	 contrast	 to	 a	 non-proof
function).	Note	that	 mul_istot 	is	declared	to	be	of	the	following	type	(or	more	accurately,	prop):

{m,n:int}	()	-<prf>	[p:int]	MUL(m,	n,	p)

which	essentially	states	that	integer	multiplication	is	a	total	function:	Given	any	two	integers	m	and	n,
there	 exists	 an	 integer	 p	 such	 that	m,	 n	 and	 p	 are	 related	 according	 to	 the	 structurally	 inductively
defined	relation	 MUL .	The	following	code	gives	an	implementation	of	 mul_istot :

primplement

mul_istot{m,n}()	=	let

//

prfun	istot

		{m:nat;n:int}	.<m>.	():	[p:int]	MUL(m,	n,	p)	=

		sif	m	>	0	then	MULind(istot{m-1,n}())	else	MULbas()

//	end	of	[istot]

//

in

		sif	m	>=	0	then	istot{m,n}()	else	MULneg(istot{~m,n}())

end	//	end	of	[mul_istot]		

Note	that	the	keyword	 primplement 	(instead	of	 implement)	initiates	the	implementation	of	a	proof.	The
inner	 proof	 function	 istot 	 encodes	 a	 proof	 showing	 that	 there	 exists	 an	 integer	 p	 for	 any	 given
natural	number	m	and	integer	n	such	that	m,	n	and	p	are	related	(according	to	 MUL).	The	keyword	 sif

is	used	for	forming	a	conditional	(proof)	expression	in	which	the	test	is	a	static	expression.	The	proof
encoded	by	 istot 	proceeds	by	induction	on	m;	if	m	>	0	holds,	then	there	exists	an	integer	p1	such	that
m-1,	n	and	p1	are	related	by	induction	hypothesis	(on	m-1)	and	thus	m,	n	and	p	are	related	for	p	=
p1+n	according	to	the	rule	encoded	by	 MULind ;	 if	m	=	0,	 then	m,	n	and	p	are	related	for	p	=	0.	The
proof	encoded	by	the	implementation	of	 mul_istot 	goes	like	this:	 if	m	is	a	natural	number,	 then	the
lemma	 proven	 by	 istot 	 shows	 that	m,	 n	 and	 some	 p	 are	 related;	 if	 m	 is	 negative,	 then	 the	 same
lemma	shows	that	~m,	n	and	p1	are	related	for	some	integer	p1	and	thus	m,	n	and	p	are	related	for	p	=
~p1	according	to	the	rule	encoded	by	 MULneg .

As	another	example	of	theorem-proving	in	ATS/LF,	a	proof	function	of	the	name	 mul_isfun 	is	given
as	follows:

prfn	mul_isfun

		{m,n:int}{p1,p2:int}

(

		pf1:	MUL(m,	n,	p1),	pf2:	MUL(m,	n,	p2)

)	:	[p1==p2]	void	=	let

		prfun	isfun

				{m:nat;n:int}{p1,p2:int}	.<m>.

		(

				pf1:	MUL(m,	n,	p1),	pf2:	MUL(m,	n,	p2)

)	:	[p1==p2]	void	=

				case+	pf1	of

				|	MULind(pf1prev)	=>	let

								prval	MULind(pf2prev)	=	pf2	in	isfun	(pf1prev,	pf2prev)

						end	//	end	of	[MULind]

				|	MULbas()	=>	let

								prval	MULbas()	=	pf2	in	()

						end	//	end	of	[MULbas]

		//	end	of	[isfun]

in

		case+	pf1	of

		|	MULneg(pf1nat)	=>	let

						prval	MULneg(pf2nat)	=	pf2	in	isfun	(pf1nat,	pf2nat)

				end	//	end	of	[MULneg]

		|	_	(*non-MULneg*)	=>>	isfun	(pf1,	pf2)

end	//	end	of	[mul_isfun]

The	keyword	 prfn 	 is	used	for	defining	a	non-recursive	proof	function,	and	 the	keyword	 prval 	 for
introducing	bindings	that	relate	names	to	proof	expressions,	that	is,	expressions	of	prop-types.	As	far
as	 pattern	 matching	 exhaustiveness	 is	 concerned,	 prval 	 is	 equivalent	 to	 val+ 	 (as	 proofs	 cannot
contain	any	effects	such	as	failures	of	pattern	matching).

What	 mul_isfun 	proves	is	that	the	relation	 MUL 	is	functional	on	its	first	two	arguments:	If	m,	n	and	p1
are	related	according	to	 MUL 	and	m,	n	and	p2	are	also	related	according	to	 MUL ,	 then	p1	and	p2	are
equal.	The	statement	is	first	proven	by	the	inner	proof	function	 isfun 	under	the	assumption	that	m	is	a
natural	 number,	 and	 then	 the	 assumption	 is	 dropped.	 Let	 us	 now	 take	 a	 look	 at	 the	 first	 matching
clause	in	the	body	of	 isfun .	If	the	clause	is	chosen,	then	 pf1 	matches	the	pattern	 MULind(pf1prev) 	and
thus	 pf1prev 	is	of	the	type	 MUL(m1,	n1,	q1) 	for	some	natural	number	m1	and	integer	n1	and	integer	p1
such	that	m=m1+1,	n=n1,	and	p1=q1+n1.	This	means	that	 pf2 	must	be	of	the	form	 MULind(pf2prev) 	for
some	 pf2prev 	of	the	type	 MUL(m2,	n2,	q2) 	such	that	m2+1=m,	n2=n	and	p2=q2+n2.	By	calling	 isfun
on	 pf1prev 	and	 pf2prev ,	which	 amounts	 to	 invoking	 the	 induction	hypothesis	 on	m-1,	we	 establish
q1=q2,	 which	 implies	 p1=p2.	 The	 second	 matching	 clause	 in	 the	 body	 of	 isfun 	 can	 be	 readily
understood,	which	corresponds	to	the	base	case	in	the	inductive	proof	encoded	by	 isfun .

Example:	Distributivity	of	Multiplication

The	distributivity	of	multiplication	over	addition	means	that	the	following	equation	holds

m	*	(n1	+	n2)	=	m	*	n1	+	m	*	n2

for	m,	n1	and	n2	ranging	over	integers.	A	direct	encoding	of	the	equation	is	given	by	the	following
(proof)	function	interface:

//

prfun

mul_distribute

		{m,n1,n2:int}{p1,p2:int}

		(MUL(m,	n1,	p1),	MUL(m,	n2,	p2)):	MUL(m,	n1+n2,	p1+p2)

//

Plainly	speaking,	the	encoding	states	that	the	product	of	m	and	(n1+n2)	is	p1+p2	if	the	product	of	m
and	 n1	 is	 p1	 and	 the	 product	 of	m	 and	 n2	 is	 p2.	An	 implementation	 of	 mul_distribute 	 is	 given	 as
follows:

primplement

mul_distribute

{m,n1,n2}{p1,p2}

		(pf1,	pf2)	=	let

//

prfun

auxnat

{m:nat}{p1,p2:int}	.<m>.

(

		pf1:	MUL(m,	n1,	p1),	pf2:	MUL(m,	n2,	p2)

)	:	MUL(m,	n1+n2,	p1+p2)	=

(

		case+	(pf1,	pf2)	of

		|	(MULbas(),	MULbas())	=>	MULbas()

		|	(MULind	pf1,	MULind	pf2)	=>	MULind(auxnat	(pf1,	pf2))

)	(*	end	of	[auxnat]	*)

//

in

//

sif

m	>=	0

then	(

		auxnat	(pf1,	pf2)

)	//	end	of	[then]

else	let

		prval	MULneg(pf1)	=	pf1

		prval	MULneg(pf2)	=	pf2

in

		MULneg(auxnat	(pf1,	pf2))

end	//	end	of	[else]

//

end	//	end	of	[mul_distribute]

The	 inner	 function	 auxnat 	 encodes	 a	 straighforward	 proof	 based	 on	 mathematical	 induction	 that
establishes	the	following	equation:

m	*	(n1	+	n2)	=	m	*	n1	+	m	*	n2

for	 m	 ranging	 over	 natural	 numbers	 and	 n1	 and	 n2	 ranging	 over	 integers.	 The	 function
mul_distribute 	can	then	be	implemented	immediately	based	on	 auxnat .

Example:	Commutativity	of	Multiplication

The	commutativity	of	multiplication	means	that	the	following	equation	holds

m	*	n	=	n	*	m

for	 m	 and	 n	 ranging	 over	 integers.	 A	 direct	 encoding	 of	 this	 equation	 is	 given	 by	 the	 following
(proof)	function	interface:

//

prfun

mul_commute{m,n:int}{p:int}(MUL(m,	n,	p)):	MUL(n,	m,	p)

//

An	implementation	of	 mul_commute 	is	given	as	follows:

primplmnt

mul_commute

		{m,n}{p}(pf0)	=	let

//

prfun

auxnat

{m:nat}

{p:int}	.<m>.

(

pf:	MUL(m,	n,	p)

)	:	MUL(n,	m,	p)	=

(

		case+	pf	of

		|	MULbas()	=>	mul_nx0_0{n}()

		|	MULind(pf1)	=>

						mul_distribute(auxnat(pf1),	mul_nx1_n{n}())

				//	end	of	[MULind]

)	(*	end	of	[auxnat]	*)

//

in

//

sif

m	>=	0

then	auxnat(pf0)

else	let

		prval	MULneg(pf1)	=	pf0	in	mul_neg_2(auxnat(pf1))

end	//	end	of	[else]

//

end	//	end	of	[mul_commute]

where	the	following	proof	functions	are	called:

//

prfun

mul_nx0_0{n:int}():	MUL(n,	0,	0)	//	n	*	0	=	0

//

prfun

mul_nx1_n{n:int}():	MUL(n,	1,	n)	//	n	*	1	=	n

//

prfun

mul_neg_2

		{m,n:int}{p:int}(MUL(m,n,p)):	MUL(m,~n,~p)	//	m*(~n)	=	~(m*n)

//

The	 inner	 function	 auxnat 	 encodes	 a	 straighforward	 proof	 based	 on	 mathematical	 induction	 that
establishes	the	following	equation:

m	*	n	=	n	*	m

for	m	ranging	over	natural	numbers	and	n	ranging	over	integers.	The	function	 mul_commute 	can	then
be	implemented	immediately	based	on	 auxnat .

Algebraic	Datasorts

A	datasort	is	rather	similar	to	a	dataype.	However,	the	former	is	declared	in	the	statics	of	ATS	while
the	latter	in	the	dynamics	of	ATS.	To	see	a	typical	need	for	datasorts,	let	us	try	to	encode	a	theorem	in
ATS	stating	 that	 s	 is	 strictly	 less	 than	2h	 if	 s	 and	h	are	 the	 size	and	height,	 respectively,	of	 a	given
binary	tree.	To	represent	binary	trees	in	the	statics,	we	first	declare	a	datasort	as	follows:

datasort	tree	=	E	of	()	|	B	of	(tree,	tree)

The	name	of	the	declared	datasort	is	 tree 	and	there	are	two	constructor	associated	with	it:	 E 	and	 B ,
where	E	forms	the	empty	tree	and	B	forms	a	tree	by	joining	two	given	trees.	For	instance,	 B(E(),	E())
is	a	static	term	of	the	sort	 tree 	that	represents	a	singleton	tree,	that	is,	a	tree	consisting	of	exactly	one
node.	Please	note	that	the	trees	formed	by	E	and	B	are	really	just	tree	skeletons	carrying	no	data.

We	now	declare	two	dataprops	as	follows	for	capturing	the	notion	of	size	and	height	of	trees:

dataprop

SZ	(tree,	int)	=

		|	SZE	(E	(),	0)	of	()

		|	{tl,tr:tree}{sl,sr:nat}

				SZB	(B	(tl,	tr),	1+sl+sr)	of	(SZ	(tl,	sl),	SZ	(tr,	sr))

//	end	of	[SZ]

dataprop

HT	(tree,	int)	=

		|	HTE	(E	(),	0)	of	()

		|	{tl,tr:tree}{hl,hr:nat}

				HTB	(B	(tl,	tr),	1+max(hl,hr))	of	(HT	(tl,	hl),	HT	(tr,	hr))

//	end	of	[HT]

Given	a	tree	t	and	an	integer	s,	SZ(t,	s)	encodes	the	relation	that	the	size	of	t	equals	s.	Similiarly,	given
a	tree	t	and	an	integer	h,	HZ(t,	h)	encodes	the	relation	that	the	height	of	t	equals	h.

As	 the	 power	 function	 (of	 base	 2)	 is	 not	 available	 in	 the	 statics	 of	ATS,	we	 declare	 a	 dataprop	 as
follows	to	capture	it:

dataprop

POW2	(int,	int)	=

		|	POW2bas	(0,	1)

		|	{n:nat}{p:int}	POW2ind	(n+1,	p+p)	of	POW2	(n,	p)

//	end	of	[POW2]

Given	two	integers	h	and	p,	POW2	(h,	p)	encodes	the	relation	that	2h	equals	p.

It	should	be	clear	by	now	that	the	following	proof	function	interface	encodes	the	theorem	stating	that
s	is	strictly	less	than	2h	if	s	and	h	are	the	size	and	height	of	a	given	binary	tree:

prfun

lemma_tree_size_height

		{t:tree}{s,h:nat}{p:int}

(

		pf1:	SZ	(t,	s),	pf2:	HT	(t,	h),	pf3:	POW2	(h,	p)

)	:	[s	<	p]	void	//	end	of	[prfun]

Let	us	now	construct	an	implementation	of	this	proof	function	as	follows.

We	first	establish	some	elementary	properties	on	the	power	function	(of	base	2):

prfun

pow2_istot

		{h:nat}	.<h>.	():	[p:int]	POW2	(h,	p)	=

		sif	h==0

				then	POW2bas	()	else	POW2ind	(pow2_istot	{h-1}	())

		//	end	of	[sif]

//	end	of	[pow2_istot]

prfun

pow2_pos

		{h:nat}{p:int}	.<h>.

		(pf:	POW2	(h,	p)):	[p	>	0]	void	=

		case+	pf	of

		|	POW2bas	()	=>	()	|	POW2ind	(pf1)	=>	pow2_pos	(pf1)

//	end	of	[pow2_pos]

prfun

pow2_inc

		{h1,h2:nat	|	h1	<=	h2}{p1,p2:int}	.<h2>.

		(pf1:	POW2	(h1,	p1),	pf2:	POW2	(h2,	p2)):	[p1	<=	p2]	void	=

		case+	pf1	of

		|	POW2bas	()	=>	pow2_pos	(pf2)

		|	POW2ind	(pf11)	=>	let

						prval	POW2ind	(pf21)	=	pf2	in	pow2_inc	(pf11,	pf21)

				end	//	end	of	[POW2ind]

//	end	of	[pow2_inc]

Clearly,	 pow2_istot 	shows	that	the	relation	encoded	by	the	dataprop	 POW2 	is	a	total	relation;	 pow2_pos
proves	that	the	power	of	each	natural	number	is	positive;	 pow2_inc 	establishes	that	the	power	function

is	increasing.

The	function	 lemma_tree_size_height 	can	be	implemented	as	follows:

primplement

lemma_tree_size_height

		(pf1,	pf2,	pf3)	=	let

//

prfun

lemma{t:tree}

		{s,h:nat}{p:int}	.<t>.

(

		pf1:	SZ	(t,	s)

,	pf2:	HT	(t,	h)

,	pf3:	POW2	(h,	p)

)	:	[p	>	s]	void	=

(

		scase	t	of

		|	E	()	=>	let

						prval	SZE	()	=	pf1

						prval	HTE	()	=	pf2

						prval	POW2bas	()	=	pf3

			in

					//	nothing

			end	//	end	of	[E]

		|	B	(tl,	tr)	=>	let

						prval	SZB	(pf1l,	pf1r)	=	pf1

						prval	HTB	{tl,tr}{hl,hr}	(pf2l,	pf2r)	=	pf2

						prval	POW2ind	(pf31)	=	pf3

						prval	pf3l	=	pow2_istot	{hl}	()

						prval	pf3r	=	pow2_istot	{hr}	()

						prval	()	=	lemma	(pf1l,	pf2l,	pf3l)

						prval	()	=	lemma	(pf1r,	pf2r,	pf3r)

						prval	()	=	pow2_inc	(pf3l,	pf31)

						prval	()	=	pow2_inc	(pf3r,	pf31)

				in

						//	nothing

				end	//	end	of	[B]

)	(*	end	of	[lemma]	*)

//

in

		lemma	(pf1,	pf2,	pf3)

end	//	end	of	[lemma_tree_size_height]

The	inner	function	 lemma ,	which	is	given	a	termination	metric	consisting	of	a	static	term	of	the	sort

tree ,	corresponds	to	a	proof	based	on	structural	induction	(where	the	involved	structure	is	the	binary
tree	 t).	Given	 two	 terms	 t1	 and	 t2	 of	 the	 sort	 tree ,	 t1	 is	 (strictly)	 less	 than	 t2	 if	 t1	 is	 a	 (proper)
substructure	of	 t2.	Evidently,	 this	 is	a	well-founded	ordering.	The	keyword	 scase 	 is	used	 to	 form	a
dynamic	 expression	 that	 does	 case-analysis	 on	 a	 static	 term	 (built	 by	 constructors	 associated	 with
some	declared	datasort).	So	the	relation	between	 sif 	and	 scase 	is	essentially	parallel	to	that	between
if 	and	 case .	Please	find	the	entirety	of	the	above	code	on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_THMPRVING/tree.dats

Example:	Establishing	Properties	on	Braun	Trees

As	stated	previously	 in	 this	book,	a	binary	 tree	 is	a	Braun	 tree	 if	 it	 is	empty	or	 if	 its	 left	and	right
subtrees	are	Braun	trees	and	the	size	of	the	left	one	minus	the	size	of	the	right	one	is	either	0	or	1.
Formally,	we	can	declare	the	following	dataprop	 isBraun 	to	capture	the	notion	of	Braun	trees:

dataprop

isBraun	(tree)	=

		|	isBraunE	(E)	of	()

		|	{tl,tr:tree}

				{sl,sr:nat	|	sr	<=	sl;	sl	<=	sr	+	1}

				isBraunB	(

						B(tl,	tr))	of	(isBraun	tl,	isBraun	tr,	SZ	(tl,	sl),	SZ	(tr,	sr)

)	//	end	of	[isBraunB]

//	end	of	[isBraun]

We	 first	 prove	 that	 there	 exists	 a	 Braun	 tree	 of	 any	 given	 size.	 This	 property	 can	 be	 encoded	 as
follows	in	ATS:

prfun	lemma_existence	{n:nat}	():	[t:tree]	(isBraun	(t),	SZ	(t,	n))

Literally,	 the	 type	assigned	 to	 lemma_existence 	means	 that	 there	 exists	 a	 tree	 t	 for	 any	given	natural
number	n	such	that	t	is	a	Braun	tree	and	the	size	of	t	is	n.	The	following	code	gives	an	implementation
of	 lemma_existence :

primplement

lemma_existence

		{n}((*void*))	=	let

//

prfun

lemma{n:nat}	.<n>.

(

		//	argless

)	:	[t:tree]	(isBraun	(t),	SZ	(t,	n))	=

		sif	n==0

				then	(isBraunE	(),	SZE	())

				else	let

						stadef	nl	=	n	/	2

						stadef	nr	=	n	-	1	-	nl

						val	(pfl1,	pfl2)	=	lemma{nl}((*void*))

						and	(pfr1,	pfr2)	=	lemma{nr}((*void*))

				in

						(isBraunB	(pfl1,	pfr1,	pfl2,	pfr2),	SZB	(pfl2,	pfr2))

				end	//	end	of	[else]

		//	end	of	[sif]

//

in

		lemma{n}((*void*))

end	//	end	of	[lemma_existence]

Note	that	 stadef 	 is	a	keyword	 in	ATS	for	 introducting	a	static	binding	between	a	name	and	a	static
term	(of	any	sort).	 If	one	prefers,	 this	keyword	can	be	chosen	 to	 replace	 the	keyword	 typedef 	 (for
introducing	a	name	and	a	static	term	of	the	sort	 t@ype).

Next	we	show	 that	 two	Braun	 trees	of	 the	same	size	are	 identical.	This	property	can	be	encoded	as
follows:

prfun

lemma_unicity

		{n:nat}{t1,t2:tree}

(

		pf1:	isBraun	t1,	pf2:	isBraun	t2,	pf3:	SZ	(t1,	n),	pf4:	SZ	(t2,	n)

)	:	EQ	(t1,	t2)	//	end	of	[lemma_unicity]

where	 EQ 	is	a	prop-constructor	introduced	by	the	following	dataprop	declaration:

dataprop	EQ	(tree,	tree)	=

		|	EQE	(E,	E)	of	()

		|	{t1l,t1r:tree}{t2l,t2r:tree}

				EQB	(B	(t1l,	t1r),	B	(t2l,	t2r))	of	(EQ	(t1l,	t2l),	EQ	(t1r,	t2r))

//	end	of	[EQ]

Clearly,	 EQ 	 is	 the	 inductively	 defined	 equality	 on	 trees.	 An	 implementation	 of	 the	 proof	 function
lemma_unicity 	is	presented	as	follows:

primplement

lemma_unicity

		(pf1,	pf2,	pf3,	pf4)	=	let

		prfun	lemma{n:nat}{t1,t2:tree}	.<n>.

		(

				pf1:	isBraun	t1,	pf2:	isBraun	t2,	pf3:	SZ	(t1,	n),	pf4:	SZ	(t2,	n)

)	:	EQ	(t1,	t2)	=

				sif	n==0

						then	let

								prval	SZE	()	=	pf3	and	SZE	()	=	pf4

								prval	isBraunE	()	=	pf1	and	isBraunE	()	=	pf2

						in

								EQE	()

						end	//	end	of	[then]

						else	let

								prval	SZB	(pf3l,	pf3r)	=	pf3

								prval	SZB	(pf4l,	pf4r)	=	pf4

								prval	isBraunB	(pf1l,	pf1r,	pf1lsz,	pf1rsz)	=	pf1

								prval	isBraunB	(pf2l,	pf2r,	pf2lsz,	pf2rsz)	=	pf2

								prval	()	=	SZ_istot	(pf1lsz,	pf3l)	and	()	=	SZ_istot	(pf1rsz,	pf3r)

								prval	()	=	SZ_istot	(pf2lsz,	pf4l)	and	()	=	SZ_istot	(pf2rsz,	pf4r)

								prval	pfeql	=	lemma	(pf1l,	pf2l,	pf3l,	pf4l)

								prval	pfeqr	=	lemma	(pf1r,	pf2r,	pf3r,	pf4r)

						in

								EQB	(pfeql,	pfeqr)

						end	//	end	of	[else]

				//	end	of	[sif]

in

		lemma	(pf1,	pf2,	pf3,	pf4)

end	//	end	of	[lemma_unicity]

Note	that	the	proof	function	 SZ_istot 	in	this	implementation	of	 lemma_unicity 	is	given	the	following
interface:

prfun

SZ_istot{t:tree}{n1,n2:int}

		(pf1:	SZ	(t,	n1),	pf2:	SZ	(t,	n2)):	[n1==n2]	void

which	simply	states	that	 SZ 	is	a	functional	relation	with	respect	to	its	first	parameter,	that	is,	there	is	at
most	one	n	for	every	given	t	such	that	t	and	n	are	related	according	to	 SZ .	Clearly,	the	mathematical
proof	corresponding	to	this	implementation	is	of	induction	on	the	size	n	of	the	two	given	trees	t1	and
t2.	In	the	base	case	where	n	is	0,	t1	and	t2	are	equal	as	they	both	are	the	empty	tree.	In	the	inductive
case	where	n	>	0,	it	is	proven	that	n1l	and	n2l	are	of	the	same	value	where	n1l	and	n2l	are	the	sizes	of
the	left	subtrees	of	t1	and	t2,	respecitvely;	similarly,	it	is	also	proven	that	n1r	and	n2r	are	of	the	same
value	where	n1r	 and	n2r	 are	 the	 sizes	of	 the	 right	 subtrees	of	 t1	 and	 t2,	 respectively;	 by	 induction
hypothesis	on	n1l,	the	left	substrees	of	t1	and	t2	are	the	same;	by	induction	hypothesis	on	n1r,	the	right
substrees	of	t1	and	t2	are	the	same;	by	the	definition	of	tree	equality	(encoded	by	 EQ),	t1	and	t2	are	the
same.

As	 a	 comparison,	 the	 following	 code	 gives	 another	 implementation	 of	 lemma_unicity 	 that	 is	 of	 a
different	(and	rather	unusual)	style:

primplement

lemma_unicity

		(pf1,	pf2,	pf3,	pf4)	=	let

//

prfun

lemma{n:nat}{t1,t2:tree}	.<t1>.

(

		pf1:	isBraun	t1,	pf2:	isBraun	t2,	pf3:	SZ	(t1,	n),	pf4:	SZ	(t2,	n)

)	:	EQ	(t1,	t2)	=

		case+	(pf1,	pf2)	of

//

		|	(isBraunE	(),	isBraunE	())	=>	EQE	()

//

		|	(isBraunB	(pf11,	pf12,	pf13,	pf14),

					isBraunB	(pf21,	pf22,	pf23,	pf24))	=>	let

//

						prval	SZB	(pf31,	pf32)	=	pf3

						prval	SZB	(pf41,	pf42)	=	pf4

//

						prval	()	=	SZ_istot	(pf13,	pf31)

						prval	()	=	SZ_istot	(pf23,	pf41)

//

						prval	()	=	SZ_istot	(pf14,	pf32)

						prval	()	=	SZ_istot	(pf24,	pf42)

//

						prval	pfeq1	=	lemma	(pf11,	pf21,	pf31,	pf41)

						prval	pfeq2	=	lemma	(pf12,	pf22,	pf32,	pf42)

				in

						EQB	(pfeq1,	pfeq2)

				end

//

		|	(isBraunE	_,	isBraunB	_)	=/=>

				let	prval	SZE	_	=	pf3	and	SZB	_	=	pf4	in	(*none*)	end

		|	(isBraunB	_,	isBraunE	_)	=/=>

				let	prval	SZB	_	=	pf3	and	SZE	_	=	pf4	in	(*none*)	end

//

in

		lemma	(pf1,	pf2,	pf3,	pf4)

end	//	end	of	[lemma_unicity]

This	implementation	corresponds	to	a	proof	by	induction	on	the	structure	of	the	given	tree	t1.	Note
that	the	use	of	the	special	symbol	 =/=> ,	which	is	a	keyword	in	ATS,	is	to	indicate	to	the	typechecker	of
ATS	 that	 the	 involved	 clause	 of	 pattern	 matching	 is	 unreachable:	 It	 is	 the	 responsibility	 of	 the
programmer	to	establish	the	falsehood	on	the	right-hand	side	of	the	clause.	Please	find	the	entirety	of
the	above	code	on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_THMPRVING/brauntree.dats

Programmer-Centric	Theorem-Proving

I	have	so	far	presented	several	formal	proofs	in	ATS.	However,	constructing	such	formal	proofs	is	at
most	a	secondary	issue	in	ATS.	If	I	compare	ATS	with	theorem-proving	systems	such	as	Isabelle	and
Coq,	 I	 would	 like	 to	 state	 emphatically	 that	 the	 design	 for	 theorem-proving	 in	 ATS	 takes	 a
fundamentally	 different	 view	 of	 theorem-proving.	 In	 particular,	 theorem-proving	 in	ATS	 does	 not
take	a	foundational	approach	that	establishes	the	validity	of	a	theorem	by	reducing	it	to	the	validity	of
a	minimal	set	of	axioms	and	rules.	Instead,	theorem-proving	in	ATS	is	mostly	done	in	a	semi-formal
manner	and	 its	primary	purpose	 is	 to	greatly	diminish	 the	chance	of	a	programmer	making	use	of
incorrect	 assumptions	 or	 claims.	 In	 this	 regard,	 theorem-proving	 in	 ATS	 is	 rather	 similar	 to
contructing	informal	paper-and-pencil	proofs	(in	mathematics	and	elsewhere).	I	refer	to	this	style	of
theorem-proving	in	ATS	as	being	programmer-centric.	In	order	to	allow	the	reader	to	obtain	a	more
concrete	 feel	 as	 to	what	 this	 style	of	 theorem-proving	 is	 like,	 I	present	 in	 the	 rest	of	 this	 section	a
simple	but	telling	example	of	programmer-centric	theorem-proving.

Suppose	 we	 are	 to	 prove	 that	 the	 square	 of	 any	 rational	 number	 cannot	 equal	 2.	 Note	 that	 this
statement	is	a	bit	weaker	than	the	one	stating	that	the	square	root	of	2	is	irrational	as	the	latter	assumes
the	very	existence	of	the	square	root	of	2.	Let	us	first	sketch	an	informal	proof	as	follows.

Suppose	(m/n)2=2	for	some	positive	numbers	m	and	n.	Clearly,	 this	means	(m)2=2(n)2,	 implying	m
being	an	even	number.	Let	m=2m2.	We	have	(2m2)2=2(n)2,	implying	(n/m2)2=2.	Clearly,	m	>	n	>	m2

holds.	 If	 we	 assume	 that	 m	 is	 the	 least	 positive	 number	 satisfying	 (m/n)2=2	 for	 some	 n,	 then	 a
contradiction	 is	 reached	 as	 n	 satisfies	 the	 same	 property.	 Therefore,	 there	 is	 no	 rational	 number
whose	square	equals	2.	Clearly,	this	proof	still	holds	if	the	number	2	is	replaced	with	another	prime
number.

The	primary	argument	in	the	above	informal	proof	can	be	encoded	in	ATS	as	follows:

//

extern

prfun

mylemma_main

{m,n,p:int	|	m*m==p*n*n}(PRIME(p)):	[m2:nat	|	n*n==p*m2*m2]	void

//

primplmnt

mylemma_main

{m,n,p}(pfprm)	=	let

		prval	pfeq_mm_pnn	=

				eqint_make{m*m,p*n*n}()

		prval	()	=	square_is_nat{m}()

		prval	()	=	square_is_nat{n}()

		prval	()	=	lemma_PRIME_param(pfprm)

		prval

		pfmod1	=

				lemma_MOD0_intr{m*m,p,n*n}()

		prval

		pfmod2	=	mylemma1{m,p}(pfmod1,	pfprm)

		prval

		[m2:int]

		EQINT()	=

				lemma_MOD0_elim(pfmod2)

		prval	EQINT()	=	pfeq_mm_pnn

		prval	()	=

		__assert{p}{p*m2*m2,n*n}()	where

		{

				extern	prfun	__assert{p:pos}{x,y:int	|	p*x==p*y}():	[x==y]	void

		}	(*	end	of	[where]	*)	//	end	of	[prval]

in

		#[m2	|	()]

end	//	end	of	[mylemma_main]

//

The	 interface	 for	 mylemma_main 	 states	 that	 (m)2=p(n)2	 implies	 (n)2=p(m2)2	 for	 some	natural	 number
m2.

Given	two	integers	m	and	p,	 MOD0(m,p) 	means	that	m	equals	the	product	of	p	and	q	for	some	natural
number	q.	This	meaning	is	encoded	into	the	following	two	proof	functions:

//

prfun

lemma_MOD0_intr{m,p,q:nat	|	m==p*q}():	MOD0(m,	p)

//

prfun

lemma_MOD0_elim{m,p:int}(MOD0(m,	p)):	[q:nat]	EQINT(m,	p*q)

//

where	 EQINT 	is	a	dataprop	declared	as	follows:

dataprop	EQINT(int,	int)	=	{x:int}	EQINT(x,	x)

Given	two	integers	x	and	y,	 EQINT(x,	y) 	simply	means	that	x	equals	y.	Also,	the	function	 eqint_make 	is
assgined	the	interface	below:

prfun	eqint_make{x,y:int	|	x	==	y}((*void*)):	EQINT	(x,	y)

Given	an	integer	p,	 PRIME(p) 	means	that	p	is	a	prime	number.	The	following	two	proof	functions	are
called	in	the	above	implementation	of	 mylemma_main :

//

prfun	lemma_PRIME_param{p:int}(PRIME(p)):	[p	>=	2]	void

//

prfun	mylemma1{n,p:int}(MOD0(n*n,	p),	PRIME(p)):	MOD0(n,	p)

//

The	proof	function	 mylemma1 	encodes	a	proposition	stating	that	p	divides	n	if	p	divides	the	square	of	n
and	p	is	also	a	prime	number.	I	give	no	implementation	of	 mylemma1 	as	I	see	the	encoded	proposition
to	be	obviously	true.	Certainly,	this	is	a	kind	of	programmer-centric	judgment.

One	may	find	that	the	following	declaration	in	the	implementation	of	 mylemma_main 	looks	mysterious:

		prval	EQINT()	=	pfeq_mm_pnn

Note	 that	 pfeq_mm_pnn 	 is	 of	 the	 prop	 EQINT(m*m,	 p*(n*n)) .	 Also,	m	 equaling	 p*m2	 for	 some	 natural
number	 m2	 is	 available	 when	 the	 above	 declaration	 is	 typechecked.	 This	 means	 that	 the	 equality
between	(p*m2)2	 and	 p*(n)2	 is	 added	 into	 the	 current	 store	 of	 (static)	 assumptions	 after	 the	 above
declaration	is	typechecked.

Please	 find	on-line	 the	 entirety	 of	 an	 encoded	 proof	 showing	 that	 there	 exists	 no	 rational	 number
whose	square	equals	2.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_THMPRVING/sqrt2_irrat.dats

Chapter	 12.	 Programming	 with	 Theorem-
Proving
Programming	with	Theorem-Proving	(PwTP)	is	a	rich	and	broad	programming	paradigm	that	allows
cohesive	 construction	of	 programs	 and	proofs	 in	 a	 syntactically	 intwined	manner.	The	 support	 for
PwTP	in	ATS	is	a	signatory	feature	of	ATS,	and	the	novelty	of	ATS	largely	stems	from	it.	For	people
who	 are	 familiar	 with	 the	 so-called	 Curry-Howard	 isomorphism,	 I	 emphasize	 that	 PwTP	 as	 is
supported	 in	 ATS	 makes	 little,	 if	 any,	 essential	 use	 of	 this	 isomorphism	 (between	 proofs	 and
programs):	The	dynamics	of	ATS	in	which	programs	are	written	is	certainly	not	pure	and	the	proofs
encoded	 in	ATS/LF	are	not	 required	 to	be	constructive,	 either.	However,	 that	proof	construction	 in
ATS	 can	 be	 done	 in	 a	 style	 of	 (functional)	 programming	 is	 fundamentally	 important	 in	 terms	 of
syntax	design	 for	ATS,	 for	 the	need	 to	combine	programs	with	proofs	would	otherwise	be	greatly
more	challenging.

In	 this	 chapter,	 I	 will	 present	 some	 simple	 but	 convincing	 examples	 to	 illustrate	 the	 power	 and
flexibility	of	PwTP	as	is	supported	in	ATS.	However,	the	real	showcase	for	PwTP	will	not	arrive	until
after	the	introduction	of	linear	types	in	ATS,	when	linear	proofs	can	be	combined	with	programs	to
track	and	safely	manipulate	 resources	such	as	memory	and	objects	 (e.g,	 file	handles).	 In	particular,
PwTP	is	to	form	the	cornersone	of	the	support	for	imperative	programming	in	ATS.

Please	find	on-line	 the	code	employed	for	 illustration	in	this	chapter	plus	some	additional	code	for
testing.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_PRGTHMPRV/

Circumventing	Nonlinear	Constraints

The	 constraint-solver	 of	 ATS	 is	 of	 rather	 diminished	 power.	 In	 particular,	 constraints	 containing
nonlinear	 integer	 terms	 (e.g.,	 those	 involving	 the	 use	 of	 multiplication	 (of	 variables))	 are
immediately	 rejected.	This	weakness	must	 be	 properly	 addressed	 for	 otherwise	 it	would	 become	 a
crippling	 limitation	 on	 practicality	 of	 the	 type	 system	 of	 ATS.	 I	 now	 use	 a	 simple	 example	 to
demonstrate	how	theorem-proving	can	be	employed	 to	circumvent	 the	need	for	handling	nonlinear
constraints	directly.

A	function	template	 list_concat 	is	implemented	as	follows:

//

//	[list_concat]	does	typecheck	in	ATS2

//	[list_concat]	does	not	typecheck	in	ATS1

//

fun{

a:t@ype

}	list_concat{m,n:nat}

(

		xss:	list	(list	(a,	n),	m)

)	:	list	(a,	m	*	n)	=

		case+	xss	of

		|	list_nil	()	=>	list_nil	()

		|	list_cons	(xs,	xss)	=>	list_append<a>	(xs,	list_concat	xss)

//	end	of	[list_concat]

where	the	interface	for	 list_append 	is	given	below:

fun{

a:t@ype

}	list_append	{n1,n2:nat}

		(xs:	list	(a,	n1),	ys:	list	(a,	n2)):	list	(a,	n1+n2)

Given	 a	 list	 xss 	 of	 length	 m 	 in	 which	 each	 element	 is	 of	 the	 type	 list(T,n) 	 for	 some	 type	 T,
list_concat<T>(xss) 	 constructs	 a	 list	 of	 the	 type	 list(T,m*n) .	When	 the	 first	matching	 clause	 in	 the
code	 for	 list_concat 	 is	 typechecked,	 a	 constraint	 is	 generated	 that	 is	 essentially	 like	 the	 following
one:

m	=	m1	+	1	implying	n	+	(m1	*	n)	=	m	*	n	holds	for	all	natural	numbers	m,	m1	and	n.

This	contraint	may	look	simple,	but	it	was	once	rejected	by	the	ATS	constraint	solver	as	it	contains

nonlinear	 integer	 terms	 (e.g.,	 m1*n 	 and	 m*n).	 In	 order	 to	 overcome	 (or	 rather	 circumvent)	 the
limitation,	we	can	make	use	of	theorem-proving.	Another	implementation	of	 list_concat 	is	given	as
follows:

fun{

a:t@ype

}	list_concat{m,n:nat}

(

		xss:	list(list(a,	n),	m)

)	:	[p:nat]	(MUL(m,	n,	p)	|	list(a,	p))	=

(

//

case+	xss	of

|	list_nil	()	=>

				(MULbas()	|	list_nil())

|	list_cons	(xs,	xss)	=>	let

				val	(pf	|	res)	=	list_concat	(xss)

		in

				(MULind	pf	|	list_append<a>	(xs,	res))

		end	//	end	of	[list_cons]

//

)	(*	end	of	[list_concat]	*)

Given	a	list	 xss 	of	the	type	 list(list(T,n),m) ,	 list_concat(xss) 	now	returns	a	pair	 (pf	 |	 res) 	 such
that	 pf 	is	a	proof	of	the	prop-type	 MUL(m,n,p) 	for	some	natural	number	 p 	and	 res 	is	a	list	of	the	type
list(T,p) ,	where	the	symbol	bar	(|)	is	used	to	separate	proofs	from	values.	In	other	words,	 pf 	acts	as
a	witness	to	the	equality	 p=m*n .	After	proof	erasure	is	performed,	this	implementation	of	 list_concat
is	 essentially	 translated	 into	 the	 previous	 one	 (as	 far	 as	 dynamic	 semantics	 is	 concerned).	 In
particular,	there	is	no	need	for	proof	construction	at	run-time.

Example:	Safe	Matrix	Subscripting

Internally,	a	matrix	of	 the	dimension	m	by	n	is	represented	as	an	array	of	 the	size	m*n.	For	matrix
subscripting,	we	need	to	implement	a	function	template	of	the	following	interface:

extern

fun{

a:t@ype

}	matrix_get

		{m,n:int}{i,j:nat	|	i	<	m;	j	<	n}

		(A:	arrayref	(a,	m*n),	col:	int	n,	i:	int	i,	j:	int	j):	a

//	end	of	[matrix_get]

Assume	that	the	matrix	is	represented	in	the	row-major	style.	Then	the	element	indexed	by	i	and	j	in
the	matrix	is	the	element	indexed	by	i*n	+	j	in	the	array	that	represents	the	matrix,	where	i	and	j	are
natural	numbers	less	than	m	and	n,	respectively.	However,	the	following	implementation	fails	to	pass
typechecking:

implement

{a}(*tmp*)

matrix_get	(A,	n,	i,	j)	=	A[i*n+j]	//	it	fails	to	typecheck!!!

The	simple	reason	for	this	failure	is	due	to	the	ATS	constraint	solver	not	being	able	to	automatically
verify	 that	 i*n+j	 is	 a	 natural	 number	 strictly	 less	 than	m*n.	An	 implementation	 of	 matrix_get 	 that
typechecks	can	be	given	as	follows:

implement

{a}(*tmp*)

matrix_get

		{m,n}{i,j}

		(A,	n,	i,	j)	=	let

//

		val	(pf	|	_in_)	=	imul2	(i,	n)

//

		prval	((*void*))	=	mul_elim(pf)

		prval	((*void*))	=	mul_nat_nat_nat(pf)

		prval	((*void*))	=	mul_gte_gte_gte{m-1-i,n}()

//

in

		A[_in_+j]

end	//	end	of	[matrix_get]

where	the	functions	called	in	the	body	of	 matrix_get 	are	assigned	the	following	interfaces:

//

fun

imul2{i,j:int}

		(int	i,	int	j):<>	[ij:int]	(MUL(i,	j,	ij)	|	int	ij)

//

prfun

mul_elim

		{i,j:int}{ij:int}	(pf:	MUL(i,	j,	ij)):	[i*j==ij]	void

//

prfun

mul_nat_nat_nat

		{i,j:nat}{ij:int}	(pf:	MUL(i,	j,	ij)):	[ij	>=	0]	void

//

prfun

mul_gte_gte_gte

		{m,n:int	|	m	>=	0;	n	>=	0}	((*void*)):	[m*n	>=	0]	void

//

Assume	 that	 m	 and	 n	 are	 natural	 numbers	 and	 i	 and	 j	 are	 natural	 numbers	 less	 than	 m	 and	 n,
respectively.	 The	 proof	 code	 employed	 in	 the	 implementation	 of	 matrix_get 	 to	 show	 i*n+j	 <	m*n
proves	(m-1-i)*n	>=	0,	which	clearly	implies	m*n	>=	i*n+n	>	i*n+j.

Note	that	there	are	a	variety	of	proof	functions	declared	in	arith_prf.sats	for	helping	prove	theorems
involving	 arithmetic	 operations.	 For	 examples	 of	 proof	 construction	 in	 ATS,	 please	 find	 the
implementation	of	some	of	these	proof	functions	in	arith_prf.dats.

The	entirety	of	the	above	presented	code	is	available	on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-Postiats/prelude/SATS/arith_prf.sats
https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-Postiats/prelude/DATS/arith_prf.dats
https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_PRGTHMPRV/matget.dats

Specifying	with	Enhanced	Precision

The	integer	addition	function	can	be	assigned	the	following	(dependent)	type	in	ATS	to	indicate	that	it
returns	the	sum	of	its	two	integer	arguments:

{i,j:int}	(int	(i),	int	(j))	->	int	(i+j)

This	type	gives	a	full	specification	of	integer	addition	as	the	only	(terminating)	function	that	can	be
given	 the	 type	 is	 the	 integer	 addition	 function.	 However,	 the	 factorial	 function,	 which	 yields	 the
product	 of	 the	 first	 n	 positive	 integers	 when	 applied	 to	 a	 natural	 number	 n,	 cannot	 be	 given	 the
following	type:

{n:nat}	int	(n)	->	int	(fact(n))

as	 fact ,	which	refers	to	the	factorial	function,	does	not	exist	in	the	statics	of	ATS.	Evidently,	a	highly
interesting	 and	 relevant	 question	 is	 whether	 a	 type	 can	 be	 formed	 in	 ATS	 that	 fully	 captures	 the
functional	 relation	specified	by	 fact ?	The	answer	 is	 affirmative.	We	can	not	only	construct	 such	a
type	but	also	assign	it	to	a	(terminating)	function	implemented	in	ATS.

Let	us	recall	that	the	factorial	function	can	be	defined	by	the	following	two	equations:

fact(0)	=	1

fact(n)	=	n	*	fact(n-1)	(for	all	n	>	0)

Naturally,	 these	 equations	 can	 be	 encoded	 by	 the	 constructors	 associated	 with	 the	 dataprop	 FACT

declared	as	follows:

dataprop

FACT(int,	int)	=

		|	FACTbas(0,	1)

		|	{n:nat}{r1,r:int}

				FACTind(n,	r)	of	(FACT(n-1,	r1),	MUL(n,	r1,	r))

//	end	of	[FACT]

Note	that	for	any	given	natural	number	n	and	integer	r,	 FACT(n,	r) 	can	be	assigned	to	a	proof	if	and
only	if	 fact(n) 	equals	r.	Therefore,	the	following	type:

{n:nat}	int(n)	->	[r:int]	(FACT(n,	r)	|	int(r))

can	only	be	assigned	to	a	function	that,	if	applied	to	a	natural	number	n,	returns	a	proof	and	an	integer

such	that	 the	proof	attests	 to	 the	integer	being	equal	 to	 fact(n) .	For	 instance,	 the	following	defined
function	 ifact 	is	assigned	this	type:

//

fun

ifact

{n:nat}	.<n>.

(

		n:	int(n)

)	:<>	[r:int]	(FACT(n,	r)	|	int	r)	=

(

//

if

n	=	0

then	(FACTbas()	|	1)

else	let

		val	(pf1	|	r1)	=	ifact	(n-1)	//	pf1:	FACT(n-1,	r1)

		val	(pfmul	|	r)	=	imul2	(n,	r1)	//	pfmul:	FACT(n,	r1,	r)

in

		(FACTind(pf1,	pfmul)	|	r)

end	//	end	of	[else]

//

)	(*	end	of	[ifact]	*)

//

After	proof	erasure,	 ifact 	precisely	implements	the	factorial	function.

Please	find	the	entirety	of	the	above	presented	code	plus	some	testing	code	on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_PRGTHMPRV/ifact.dats

Example:	Another	Verified	Factorial

The	 function	 ifact 	 presented	 in	 the	 section	 on	 specifying	 with	 enhanced	 precision	 is	 a	 verified
implementation	of	the	factorial	function	as	its	type	guarantees	that	 ifact 	implements	the	specification
of	factorial	encoded	by	the	dataprop	 FACT .	Clearly,	the	implementation	of	 ifact 	closely	follows	the
declaration	 of	 FACT .	 If	 we	 think	 of	 the	 latter	 as	 a	 logic	 program,	 then	 the	 former	 is	 essentially	 a
functional	version	extracted	from	the	logic	program.	However,	the	implementation	of	a	specification
in	practice	can	often	digress	far	from	the	specification	algorithmically.	For	instance,	we	may	want	to
have	a	verified	implementation	of	factorial	that	is	also	tail-recursive.	This	can	be	done	as	follows:

fun

ifact2

{n:nat}	.<>.

(

		n:	int	(n)

)	:<>	[r:int]	(FACT(n,	r)	|	int	r)	=	let

		fun	loop

				{i:nat|i	<=	n}{r:int}	.<n-i>.

		(

				pf:	FACT(i,	r)

		|	n:	int	n,	i:	int	i,	r:	int	r

)	:<>	[r:int]	(FACT(n,	r)	|	int	r)	=

				if	n	-	i	>	0	then	let

						val	(pfmul	|	r1)	=	imul2	(i+1,	r)	in	loop	(FACTind(pf,	pfmul)	|	n,	i+1,	r1)

				end	else	(pf	|	r)	//	end	of	[if]

		//	end	of	[loop]

in

		loop	(FACTbas()	|	n,	0,	1)

end	//	end	of	[ifact2]

The	function	 ifact2 	is	assigned	a	type	indicating	that	 ifact2 	is	a	verified	implementation	of	factorial,
and	it	is	defined	as	a	call	to	the	inner	function	 loop 	that	is	clearly	tail-recursive.	If	we	erase	types	and
proofs,	the	function	 ifact2 	is	essentially	defined	as	follows:

fun	ifact2	(n)	=	let

		fun	loop	(n,	i,	r)	=

				if	n	-	i	>	0	then	let

						val	r1	=	(i+1)	*	r	in	loop	(n,	i+1,	r1)

				end	else	r	//	end	of	[if]

		//	end	of	[loop]

in

		loop	(n,	0,	1)

end	//	end	of	[ifact2]

When	the	inner	function	 loop 	is	called	on	three	arguments	n,	i	and	r,	the	precondition	for	this	call	is
that	i	 is	natural	number	less	than	or	equal	to	n	and	r	equals	fact(i),	 that	is,	 the	value	of	the	factorial
function	on	i.	This	precondition	is	captured	by	the	type	assigned	to	 loop 	and	thus	enforced	at	each	call
site	of	 loop 	in	the	implementation	of	 ifact2 .

Please	find	on-line	the	entirety	of	the	above	presented	code	plus	some	testing	code.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_PRGTHMPRV/ifact23.dats

Example:	Verified	Fast	Exponentiation

Given	an	integer	x,	pow(x,	n),	the	nth	power	of	x,	can	be	defined	inductively	as	follows:

pow	(x,	0)	=	1

pow	(x,	n)	=	x	*	pow	(x,	n-1)	(for	all	n	>	0)

A	direct	implementation	of	this	definition	is	given	as	follows:

fun	ipow	{n:nat}	.<n>.

		(x:	int,	n:	int	n):	int	=	if	n	>	0	then	x	*	ipow	(x,	n-1)	else	1

//	end	of	[ipow]

which	is	of	time-complexity	O(n)	(assuming	multiplication	is	O(1)).	A	more	efficient	implmentation
can	be	given	as	follows:

fun

ifastpow

{n:nat}	.<n>.

(

		x:	int,	n:	int	n

)	:	int	=

		if	n	>	0	then	let

				val	n2	=	half(n)

				val	i2	=	n-(2*n2)

		in

				if	i2	>	0	then	ifastpow	(x*x,	n2)	else	x	*	ifastpow	(x*x,	n2)

		end	else	1	//	end	of	[if]

//	end	of	[ifastpow]

which	makes	use	of	the	property	that	pow(x,	n)	equals	pow(x*x,	n/2)	if	n	is	even	or	x	*	pow(x*x,	n/2)
if	 n	 is	 odd.	 This	 is	 referred	 to	 as	 fast	 exponentiation.	 Note	 that	 ifastpow 	 is	 of	 time-complexity
O(log(n)).

Clearly,	what	is	done	above	is	not	restricted	to	exponentiation	on	integers.	As	long	as	the	underlying
multiplication	 is	 associative,	 fast	 exponentiation	can	be	employed	 to	compute	powers	of	 any	given
element.	 In	 particular,	 powers	 of	 square	 matrices	 can	 be	 computed	 in	 this	 way.	 I	 now	 present	 as
follows	a	verified	generic	implementation	of	fast	exponentiation.

Handling	generic	data	properly	in	a	verified	implementation	often	requires	some	finesse	with	the	type
system	of	ATS.	Let	us	first	introduce	an	abstract	type	constructor	 ELT 	as	follows:

sortdef	elt	=	int	//	[elt]	is	just	an	alias	for	[int]

abst@ype	ELT(a:t@ype,	x:elt)	=	a	//	[x]	is	an	imaginary	stamp

This	is	often	referred	to	as	stamping.	For	each	type	T	and	stamp	x,	 ELT(T,	x) 	is	just	T	as	far	as	data
representation	 is	concerned.	The	stamps	are	 imaginary	and	 they	are	 solely	used	 for	 the	purpose	of
specification.	Let	us	next	introduce	an	abstract	prop-type	 MUL 	and	a	function	template	 mul_elt_elt :

//

absprop	MUL(elt,	elt,	elt)	//	abstract	mul	relation

//

fun

{a:t@ype}

mul_elt_elt{x,y:elt}

		(x:	ELT(a,	x),	y:	ELT(a,	y)):	[xy:elt]	(MUL(x,	y,	xy)	|	ELT(a,	xy))

//	end	of	[mul_elt_elt]

//

Please	do	not	confuse	 MUL 	with	the	one	of	the	same	name	that	is	declared	in	arith_prf.sats.	To	state
that	the	encoded	multiplication	is	associative,	we	can	introduce	the	following	proof	function:

praxi

mul_assoc

{x,y,z:elt}{xy,yz:elt}{xy_z,x_yz:elt}

(

		MUL(x,	y,	xy),	MUL(xy,	z,	xy_z),	MUL(y,	z,	yz),	MUL(x,	yz,	x_yz)

)	:	[xy_z==x_yz]	void	//	end	of	[mul_assoc]

The	keyword	 praxi 	indicates	that	 mul_assoc 	is	treated	as	a	form	of	axiom,	which	is	not	expected	to	be
implemented.

The	abstract	power	function	can	be	readily	specified	in	terms	of	the	abstract	prop-type	 MUL :

dataprop

POW	(

		elt(*base*),	int(*exp*),	elt(*res*)

)	=	//	res	=	base^exp

		|	{x:elt}

				POWbas(x,	0,	1(*unit*))

		|	{x:elt}{n:nat}{p,p1:elt}

				POWind(x,	n+1,	p1)	of	(POW(x,	n,	p),	MUL(x,	p,	p1))

//	end	of	[POW]

As	can	be	expected,	generic	fast	exponentiation	is	given	the	following	interface:

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-Postiats/prelude/SATS/arith_prf.sats

fun{a:t@ype}

fastpow_elt_int{x:elt}{n:nat}

		(x:	ELT(a,	x),	n:	int	n):	[p:elt]	(POW(x,	n,	p)	|	ELT(a,	p))

//	end	of	[fastpow_elt_int]

With	 the	preparation	done	 above,	 a	 straightforward	 implementation	of	 fastpow_elt_int 	 can	 now	be
presented	as	follows:

implement

{a}(*tmp*)

fastpow_elt_int

		(x,	n)	=	let

//

(*

lemma:	(x*x)^n	=	x^(2n)

*)

extern

prfun

lemma

{x:elt}{xx:elt}{n:nat}{y:elt}

		(pfxx:	MUL(x,	x,	xx),	pfpow:	POW(xx,	n,	y)):	POW(x,	2*n,	y)

//

overload	*	with	mul_elt_elt	//	[*]	loaded	with	mul_elt_elt

//

in

//

if

n	=	0

then	let

		val	res	=	mulunit<a>	()	in	(POWbas	()	|	res)	//	res	=	1

end	//	end	of	[then]

else	let

		val	n2	=	half	n

		val	(pfxx	|	xx)	=	x	*	x

		val	(pfpow2	|	res)	=	fastpow_elt_int<a>	(xx,	n2)	//	xx^n2	=	res

		prval	pfpow	=	lemma	(pfxx,	pfpow2)	//	pfpow:	x^(2*n2)	=	res

in

		if	n=2*n2

				then	(pfpow	|	res)

				else	let

						val	(pfmul	|	xres)	=	x	*	res	in	(POWind(pfpow,	pfmul)	|	xres)

				end	//	end	of	[else]

end	//	end	of	[else]

//

end	//	end	of	[fastpow_elt_int]

Note	that	this	implementation	of	 fastpow_elt_int 	is	not	tail-recursive.	The	function	template	 mulunit ,
which	 is	 called	 to	 produce	 a	 unit	 for	 the	 underlying	 multiplication,	 is	 assigned	 the	 following
interface:

fun{a:t@ype}	mulunit	():	ELT(a,	1(*stamp*))

The	proof	function	 lemma 	simply	establishes	that	pow(x,	2*n)=	pow(x*x,	n)	for	each	natural	number
n.	I	have	made	an	implementation	of	 lemma 	available	on-line	but	 I	suggest	 that	 the	 interested	reader
give	it	a	try	first	to	implement	 lemma 	before	taking	a	look	at	the	given	implementation.	Note	that	the
following	axioms	are	needed	to	implement	 lemma :

//

praxi

mul_istot	//	MUL	is	total

		{x,y:elt}	((*void*)):	[xy:elt]	MUL(x,	y,	xy)

//

praxi

mul_isfun	//	MUL	is	functional

		{x,y:elt}{z1,z2:elt}(MUL(x,	y,	z1),	MUL(x,	y,	z2)):	[z1==z2]	void

//

Another	interesting	(and	possibly	a	bit	challenging)	exercise	is	to	implement	 fastpow_elt_int 	in	a	tail-
recursive	fashion.

Please	 find	on-line	 the	 two	 files	 fastexp.sats	and	fastexp.dats	 that	 contain	 the	 entirety	 of	 the	 above
presented	code.

Now	we	have	 implemented	 fastpow_elt_int .	How	can	 it	be	used?	Please	find	on-line	 an	example	 in
which	 fastpow_elt_int 	 is	 called	 to	 implement	 fast	 exponentiation	 on	 a	 2-by-2	 matrix	 so	 that	 the
Fibonacci	numbers	can	be	computed	in	a	highly	efficient	manner.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_PRGTHMPRV/fastexp.sats
https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_PRGTHMPRV/fastexp.dats
https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_PRGTHMPRV/test_fastexp.dats

IV.	Programming	with	Views	and	Viewtypes
Table	of	Contents
13.	Introduction	to	Views	and	Viewtypes
14.	Dataviews	as	Linear	Dataprops
15.	Dataviewtypes	as	Linear	Datatypes
16.	Abstract	Views	and	Viewtypes

Chapter	 13.	 Introduction	 to	 Views	 and
Viewtypes
Probably	the	single	greatest	motivation	behind	the	development	of	ATS	is	the	desire	to	make	ATS	a
programming	 language	 that	 can	 be	 employed	 effectively	 to	 construct	 safe	 and	 reliable	 programs
running	in	the	kernels	of	operating	systems.	Instead	of	following	seemingly	natural	approaches	that
often	focus	on	carving	out	a	"safe"	subset	of	C	and/or	put	wrappers	around	"unsafe"	programming
features	 in	 C,	 ATS	 relies	 on	 the	 paradigm	 of	 programming	 with	 theorem-proving	 to	 prevent
resources	such	as	memory	from	being	misused	or	mismanaged,	advocating	an	approach	to	safety	that
is	 both	 general	 and	 flexible.	 For	 example,	 a	well-typed	 program	 constructed	 in	ATS	 cannot	 cause
buffer	 overrun	 at	 run-time	 even	 though	 pointer	 arithmetic	 is	 fully	 supported	 in	 ATS.	 More
specifically,	 if	 a	 pointer	 is	 to	 be	 dereferenced,	ATS	 requires	 that	 a	 proof	 be	 given	 attesting	 to	 the
safety	of	the	dereferencing	operation.	Proofs	of	this	kind	are	constructed	to	demonstrate	the	validity
of	 linear	propositions,	which	are	 referred	 to	as	views	 in	ATS,	 for	classifying	 resources	as	well	 as
capabilities.

Please	find	on-line	the	code	presented	for	illustration	in	this	chapter.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_VVTINTRO/

Views	for	Memory	Access	through	Pointers

A	view	is	a	linear	version	of	prop,	where	the	word	linear	comes	from	linear	logic,	a	resource-aware
logic	invented	by	Jean-Yves	Girard.	There	is	a	built-in	sort	 view 	for	static	terms	representing	views.
Given	a	type	T	and	a	memory	location	L,	a	view	of	the	form	 T@L 	can	be	formed	to	indicate	a	value	of
the	type	T	being	stored	in	the	memory	at	the	location	L,	where	 @ 	is	a	special	infix	operator.	Views	of
this	 form	 are	 extremely	 common	 in	 practice,	 and	 they	 are	 often	 referred	 to	 as	 at-views.	 As	 an
example,	the	following	function	templates	 ptr_get0 	and	 ptr_set0 ,	which	reads	and	writes	 through	a
given	pointer,	are	assigned	types	containing	at-views:

fun{a:t@ype}

ptr_get0	{l:addr}	(pf:	a	@	l	|	p:	ptr	l):	(a	@	l	|	a)

fun{a:t@ype}

ptr_set0	{l:addr}	(pf:	a?	@	l	|	p:	ptr	l,	x:	a):	(a	@	l	|	void)

Note	that	 ptr 	is	a	type	constructor	that	forms	a	type	 ptr(L) 	when	applied	to	a	static	term	L	of	the	sort
addr ,	and	the	only	value	of	the	type	 ptr(L) 	is	the	pointer	that	points	to	the	location	denoted	by	L.

Given	a	type	T,	the	function	 ptr_get0<T> 	is	assigned	the	following	type:

{l:addr}	(T	@	l	|	ptr	(l))	->	(T	@	l	|	T)

which	indicates	that	the	function	 ptr_get0<T> 	returns	a	proof	of	the	view	 T@L 	and	a	value	of	the	type	T
when	 applied	 to	 a	 proof	 of	 the	 view	 T@L 	 and	 a	 pointer	 of	 the	 type	 ptr(L) 	 for	 some	 L.	 Intuitively
speaking,	a	proof	of	the	view	 T@L ,	which	is	a	form	of	resource	as	 T@L 	is	linear,	is	consumed	when	it
is	 passed	 to	 ptr_get0<T> ,	 and	 another	 proof	 of	 the	 same	 view	 T@L 	 is	 generated	 when	 ptr_get0<T>

returns.	Notice	that	a	proof	of	the	view	 T@L 	must	be	returned	for	otherwise	subsequent	accesses	to	the
memory	location	L	would	have	been	precluded.

Similarly,	the	function	 ptr_set0<T> 	is	assigned	the	following	type:

{l:addr}	(T?	@	l	|	ptr	(l))	->	(T	@	l	|	void)

Note	that	T?	is	a	type	for	values	of	size	 sizeof(T) 	that	are	assumed	to	be	uninitialized.	The	function
ptr_set0<T> 	returns	a	proof	of	the	view	 T@L 	when	applied	to	a	proof	of	the	view	 T?@L ,	a	pointer	of	the
type	 ptr(L) 	and	a	value	of	the	type	T.	The	use	of	the	view	 T?@L 	indicates	that	the	memory	location	at	L
is	assumed	to	be	uninitialized	when	 ptr_set0<T> 	is	called.

As	an	example,	a	function	template	 swap0 	is	implemented	as	follows	for	swapping	memory	contents
at	two	given	locations:

fn{a:t@ype}

swap0	{l1,l2:addr}

(

		pf1:	a	@	l1,	pf2:	a	@	l2

|	p1:	ptr	(l1),	p2:	ptr	(l2)

)	:	(a	@	l1,	a	@	l2	|	void)	=	let

		val	(pf1	|	x1)	=	ptr_get0<a>	(pf1	|	p1)

		val	(pf2	|	x2)	=	ptr_get0<a>	(pf2	|	p2)

		val	(pf1	|	())	=	ptr_set0<a>	(pf1	|	p1,	x2)

		val	(pf2	|	())	=	ptr_set0<a>	(pf2	|	p2,	x1)

in

		(pf1,	pf2	|	())

end	//	end	of	[swap0]

Compared	 to	 a	 corresponding	 implementation	 in	C,	 the	verbosity	of	 this	 one	 in	ATS	 is	 evident.	 In
particular,	the	need	for	threading	linear	proofs	through	calls	to	functions	that	make	use	of	resources
can	often	 result	 in	 a	 lot	of	administrative	 code	 to	be	written.	 I	 now	present	 some	 special	 syntax	 to
significantly	alleviate	the	need	for	such	administrative	code.

The	function	templates	 ptr_get1 	and	 ptr_set1 	are	given	the	following	interfaces:

fun{a:t@ype}

ptr_get1	{l:addr}	(pf:	!a	@	l	>>	a	@	l	|	p:	ptr	l):	a

fun{a:t@ype}

ptr_set1	{l:addr}	(pf:	!a?	@	l	>>	a	@	l	|	p:	ptr	l,	x:	a):	void

Clearly,	for	each	type	T,	the	function	 ptr_get1<T> 	is	assigned	the	following	type:

{l:addr}	(!T	@	l	>>	T	@	l	|	ptr(l))	->	T

Given	a	linear	proof	pf	of	the	view	 T@L 	for	some	L	and	a	pointer	p	of	the	type	 ptr(L) ,	the	function
call	 ptr_get1<T> (pf,	 p)	 is	 expected	 to	 return	 a	 value	 of	 the	 type	 T.	 However,	 the	 proof	 pf	 is	 not
consumed.	 Instead,	 it	 is	 still	 a	 proof	 of	 the	 view	 T@L 	 after	 the	 function	 call	 returns.	 Similarly,	 the
function	 ptr_set1<T> 	is	assigned	the	following	type:

{l:addr}	(!T?	@	l	>>	T	@	l	|	ptr(l),	T)	->	void

Given	a	linear	proof	pf	of	the	view	 T?@L 	for	some	L,	a	pointer	p	of	the	type	 ptr(L) 	and	a	value	v	of

the	type	T,	the	function	call	 ptr_set1<T> (pf,	p,	v)	is	expected	to	return	the	void	value	while	changing
the	view	of	pf	from	 T?@L 	to	 T@L .	In	general,	assume	that	f	is	given	a	type	of	the	following	form	for
some	views	V1	and	V2:

(...,!V1	>>	V2,	...)	->	...

Then	a	function	call	f(...,	pf,	...)	on	some	proof	variable	pf	of	the	view	V1	is	to	change	the	view	of	pf
into	V2	upon	its	return.	In	the	case	where	V1	and	V2	are	the	same,	!V1	>>	V2	can	simply	be	written	as
!V1.	 As	 an	 example,	 a	 function	 template	 swap1 	 for	 swapping	 the	 contents	 at	 two	 given	 memory
locations	is	implemented	as	follows:

fn{a:t@ype}

swap1	{l1,l2:addr}	(

		pf1:	!a@l1,	pf2:	!a@l2	|	p1:	ptr	l1,	p2:	ptr	l2

)	:	void	=	let

		val	x	=	ptr_get1<a>	(pf1	|	p1)

		val	()	=	ptr_set1<a>	(pf1	|	p1,	ptr_get1<a>	(pf2	|	p2))

		val	()	=	ptr_set1<a>	(pf2	|	p2,	x)

in

		//	nothing

end	//	end	of	[swap1]

Clearly,	this	implementation	is	considerably	cleaner	when	compared	to	the	above	implementation	of
swap0 .

A	further	simplied	implementation	of	 swap1 	is	given	as	follows:

fn{a:t@ype}

swap1{l1,l2:addr}

(

		pf1:	!a@l1,	pf2:	!a@l2

|	p1:	ptr	(l1),	p2:	ptr	(l2)

)	:	void	=	let

		val	tmp	=	!p1	in	!p1	:=	!p2;	!p2	:=	tmp

end	//	end	of	[swap1]

Given	a	pointer	p	of	the	type	 ptr(L) 	for	some	L,	 !p 	yields	the	value	stored	at	the	memory	location	L.
The	 typechecker	 first	 searches	 for	 a	 proof	 of	 the	 view	 T@L 	 for	 some	 T	 among	 all	 the	 currently
available	proofs	when	typechecking	 !p ;	if	such	a	proof	pf	is	found,	then	 !p 	is	essentially	elaborated
into	 ptr_get1(pf	 |	 p) 	and	 then	 typechecked.	As	 !p 	 is	a	 left-value	 (which	 is	 to	be	explained	 later	 in
detail),	 it	 can	also	be	used	 to	 form	an	assignment	 like	 !p	 :=	 v 	 for	 some	value	v.	The	 typechecker

elaborates	 !p	:=	v 	into	 ptr_set1(pf	|	p,	v) 	for	the	sake	of	typechecking	if	a	proof	of	the	at-view	 T@L
can	be	found	for	some	type	T	among	all	the	currently	available	proofs.	Note	that	this	implementation
of	 swap1 	makes	no	use	of	administrative	code	for	handling	linear	proofs	explicitly.

Viewtypes	as	a	Combination	of	Views	and	Types

A	linear	type	in	ATS	is	given	the	name	viewtype,	which	is	chosen	to	indicate	that	a	linear	type	consists
of	two	parts:	one	part	for	views	and	the	other	for	 types.	For	instance,	given	a	view	V	and	a	type	T,
then	 the	 tuple	 (V	 |	T)	 is	 a	viewtype,	where	 the	bar	 symbol	 (|)	 is	 a	 separator	 (just	 like	a	comma)	 to
separate	views	 from	 types.	What	 seems	a	bit	 surprising	 is	 the	opposite:	For	 each	viewtype	VT,	we
may	assume	the	existence	of	a	view	V	and	a	type	T	such	that	VT	is	equivalent	to	(V	|	T).	Formally,	this
T	 can	 be	 referred	 as	 VT?!	 in	 ATS.	 This	 somewhat	 unexpected	 interpretation	 of	 linear	 types	 is	 a
striking	novelty	of	ATS,	which	stresses	that	the	linearity	of	a	viewtype	comes	entirely	from	the	view
part	residing	within	it.

The	built-in	sorts	 viewtype 	and	 viewt@ype 	are	for	static	terms	representing	viewtypes	whose	type	parts
are	of	the	sorts	 type 	and	 t@ype ,	respectively.	In	other	words,	the	former	is	assigned	to	viewtypes	for
linear	 values	 of	 the	 size	 equal	 to	 that	 of	 a	 pointer	 and	 the	 latter	 to	 viewtypes	 for	 linear	 values	 of
unspecified	size.	For	example,	 tptr 	is	defined	as	follows	that	takes	a	type	and	an	address	to	form	a
viewtype	(of	the	sort	 viewtype):

vtypedef	tptr	(a:t@ype,	l:addr)	=	(a	@	l	|	ptr	l)

Given	a	type	T	and	an	address	L,	 the	viewtype	 tptr(T,	L) 	 is	 for	a	pointer	 to	L	paired	with	a	 linear
proof	stating	that	a	value	of	the	type	T	is	stored	at	L.	If	we	think	of	a	counter	as	a	pointer	paired	with	a
proof	stating	that	the	pointer	points	to	an	integer	(representing	the	count),	then	the	following	defined
function	 getinc 	returns	the	current	count	of	a	given	counter	after	increasing	it	by	1:

fn	getinc

		{l:addr}{n:nat}

(

		cnt:	!tptr	(int(n),	l)	>>	tptr	(int(n+1),	l)

)	:	int(n)	=	n	where	{

		val	n	=	ptr_get1<int(n)>	(cnt.0	|	cnt.1)

		val	()	=	ptr_set1<int(n+1)>	(cnt.0	|	cnt.1,	n+1)

}	(*	end	of	[getinc]	*)

A	particularly	interesting	example	of	a	viewtype	is	the	following	one:

vtypedef	cloptr

		(a:t@ype,	b:t@ype,	l:addr)	=

		[env:t@ype]	(((&env,	a)	->	b,	env)	@	l	|	ptr	l)

//	end	of	[cloptr_app]

Given	two	types	A	and	B,	a	pointer	to	some	address	L	where	a	closure	function	is	stored	that	takes	a
value	of	the	type	A	to	return	a	value	of	the	type	B	can	be	given	the	viewtype	 cloptr(A,	B,	L) .	Note	that
a	 closure	 function	 is	 just	 an	 envless	 function	 paired	with	 an	 environment	 containing	 bindings	 for
variables	 in	 the	body	of	 the	 closure	 function	 that	 are	 introduced	 from	outside.	 In	 the	 function	 type
(&env,	 a)	 ->	 b ,	 the	 symbol	 & 	 indicates	 that	 the	 corresponding	 function	 argument	 is	 passed	 by
reference,	that	is,	the	argument	is	required	to	be	a	left-value	and	what	is	actually	passed	at	run-time	is
the	address	of	the	left-value.	I	will	cover	the	issue	of	call-by-reference	elsewhere	in	more	details.	The
following	 piece	 of	 code	 demonstrates	 a	 pointer	 to	 a	 closure	 function	 being	 called	 on	 a	 given
argument:

fun{

a:t@ype}{b:t@ype

}	cloptr_app	{l:addr}

(

		pclo:	!cloptr	(a,	b,	l),	x:	a

)	:	b	=	let

		val	p	=	pclo.1

(*

//

//	taking	out	pf:	((&env,	a)	->	b,	env)	@	l

//

		prval	pf	=	pclo.0

//

*)

		val	res	=	!p.0	(!p.1,	x)

(*

		prval	()	=	pclo.0	:=	pf	//	putting	the	proof	pf	back

*)

in

		res

end	//	end	of	[cloptr]

Note	that	the	linear	proof	in	 pclo 	is	first	taken	out	so	that	the	code	for	dereferencing	p	(denoted	by
the	syntax	 !p)	can	pass	typechecking,	and	it	is	then	returned	so	that	the	type	of	 pclo 	is	restored	to	its
original	one.	This	process	of	taking	out	a	linear	proof	from	a	record	and	then	putting	it	back	into	the
record	can	be	automatically	performed	by	the	typechecker	of	ATS.

The	 very	 ability	 to	 explain	 within	 ATS	 programming	 features	 such	 as	 closure	 function	 is	 a
convincing	indication	of	the	expressiveness	of	the	type	system	of	ATS.

Left-Values	and	Call-by-Reference

In	 its	 simplest	 form,	a	 left-value	 is	 just	a	pointer	paired	with	a	 linear	proof	attesting	 to	a	value	 (of
some	type)	being	stored	at	the	location	to	which	the	pointer	points.	The	name	left-value	 stems	from
such	a	value	being	allowed	to	appear	on	the	left-hand	side	of	an	assignment	statement	(in	languages
like	C).	Often,	a	left-value	is	intuitively	explained	as	a	value	with	an	address	attached	to	it.	Note	that
whatever	representation	chosen	for	a	left-value	must	make	it	possible	to	identify	both	the	pointer	and
the	linear	proof	(of	some	at-view)	that	are	associated	with	the	left-value.

In	ATS,	the	simplest	expression	representing	a	left-value	is	 !p ,	where	 ! 	is	a	special	symbol	and	p	a
value	of	the	type	 ptr(L) 	for	some	address	L.	When	this	expression	is	typechecked,	a	proof	of	 T@L 	for
some	type	T	is	required	to	be	found	among	the	currently	available	proofs.	I	will	introduce	additional
forms	of	left	values	gradually.

The	 default	 strategy	 for	 passing	 a	 function	 argument	 in	 ATS	 is	 call-by-value.	 However,	 it	 is	 also
allowed	in	ATS	to	specify	that	call-by-reference	is	chosen	for	passing	a	particular	function	argument.
By	 call-by-reference,	 it	 is	 meant	 that	 the	 argument	 to	 be	 passed	 must	 be	 a	 left-value	 and	 what	 is
actually	 passed	 is	 the	 address	 of	 the	 left-value	 (instead	 of	 the	 value	 stored	 at	 the	 address).	 For
example,	the	following	defined	function	 swap2 	makes	essential	use	of	call-by-reference:

fn{

a:t@ype

}	swap2	(

		x1:	&a,	x2:	&a

)	:	void	=	let

		val	tmp	=	x1	in	x1	:=	x2;	x2	:=	tmp

end	//	end	of	[swap2]

Note	that	the	special	symbol	 & 	in	front	of	the	type	of	a	function	argument	indicates	that	the	argument
needs	to	be	passed	according	to	the	call-by-reference	strategy.	The	following	code	implements	 swap1
based	on	 swap2 :

fn{

a:t@ype

}	swap1{l1,l2:addr}

(

		pf1:	!a	@	l1,	pf2:	!a	@	l2	|	p1:	ptr	l1,	p2:	ptr	l2

)	:	void	=	swap2	(!p1,	!p2)

When	the	call	 swap2(!p1,	!p2) 	 is	evaluated	at	run-time,	 the	parameters	actually	being	passed	are	 the

two	pointers	 p1 	 and	 p2 	 (rather	 than	 the	 values	 stored	 at	 the	 locations	 to	which	 these	 two	pointers
point).

Given	a	type	T	and	an	integer	N,	the	syntax	 @[T][N] 	stands	for	a	flat	array	consisting	N	elements	of
the	type	T.	Please	note	that	a	value	of	the	type	 @[T][N] 	is	of	the	size	N*sizeof(T).	If	a	function	has	a
parameter	representing	an	array,	 then	 this	parameter	 is	most	 liklely	call-by-reference.	For	 instance,
the	 following	 code	 implements	 a	 function	 that	 takes	 two	 arrays	 of	 doubles	 to	 compute	 their	 dot
product	(also	knowns	as	inner	product):

fun	dotprod	

(

		A:	&(@[double][3])

,	B:	&(@[double][3])

)	:	double	=

(

		A[0]	*	B[0]	+	A[1]	*	B[1]	+	A[2]	*	B[2]

)

Note	that	both	array	arguments	of	 dotprod 	are	call-by-reference.

Stack-Allocated	Variables

Given	a	 type	T	and	an	 address	L,	how	can	a	proof	of	 the	view	 T@L 	 be	 obtained	 in	 the	 first	 place?
There	are	actually	a	variety	of	methods	 for	obtaining	such	proofs	 in	practice,	and	 I	present	one	as
follows	that	is	based	on	stack-allocation	of	local	variables.

In	the	body	of	the	following	function	 foo ,	some	stack-allocated	local	variables	are	declared:

fn	foo	():	void	=	let

		var	x0:	int	//	view@(x0):	int?	@	x0

		val	()	=	x0	:=	0	//	view@(x0):	int(0)	@	x0

		var	x1:	int	=	1	//	view@(x1):	int(1)	@	x1

//

//	[with]	is	a	keyword	in	ATS

//

		var	y:	int	with	pfy	//	pfy	is	an	alias	of	view@(y):	int?	@	y

		val	()	=	y	:=	2	//	pfy	=	view@(y):	int(2)	@	y

		var	z:	int	with	pfz	=	3	//	pfz	is	an	alias	of	view@(z):	int(3)	@	z

in

		//	nothing

end	//	end	of	[foo]

The	keyword	 var 	is	for	declaring	a	local	variable.	When	a	variable	is	declared,	either	its	type	or	its
initial	value	needs	to	be	given.	If	a	variable	is	declared	without	a	type,	then	the	type	of	its	initial	value
is	 assumed	 to	 be	 its	 type.	 Assume	 that	 a	 variable	 x	 is	 declared	 of	 type	 T.	 Then	 the	 pointer	 to	 the
location	of	the	variable	is	denoted	by	 addr@(x) ,	where	 addr@ 	 is	a	keyword,	and	its	associated	linear
proof	 (of	 some	 at-view)	 can	 be	 referred	 to	 as	 view@(x) ,	 where	 view@ 	 is	 a	 keyword.	 A	 variable	 is
another	form	of	left-value	in	ATS.	In	the	body	of	 foo ,	 x0 	is	declared	to	be	a	variable	of	the	type	 int
and	then	it	is	initialized	with	the	integer	0;	 x1 	is	declared	to	be	a	variable	of	the	type	 int 	that	is	given
the	initial	value	1;	 y 	is	declared	to	be	a	variable	of	the	type	 int 	while	 pfy 	is	introduced	as	an	alias
for	 view@(y) ,	and	then	 y 	is	initialized	with	the	integer	2;	 z 	is	declared	to	be	a	variable	of	the	type	 int
that	is	given	the	initial	value	3	while	 pfz 	is	introduced	as	an	alias	for	 view@(z) .

The	following	code	gives	an	implementation	of	the	factorial	function:

fn	fact{n:nat}

		(n:	int	(n)):	int	=	let

		fun	loop{n:nat}{l:addr}	.<n>.

				(pf:	!int	@	l	|	n:	int	n,	res:	ptr	l):	void	=

				if	n	>	0	then	let

						val	()	=	!res	:=	n	*	!res	in	loop	(pf	|	n-1,	res)

				end	//	end	of	[if]

		//	end	of	[loop]

		var	res:	int	with	pf	=	1

		val	()	=	loop	(pf	|	n,	addr@res)	//	addr@res:	the	pointer	to	res

in

		res

end	//	end	of	[fact]

Note	that	 the	variable	 res 	holds	 the	 intermediate	 result	during	 the	execution	of	 the	 loop.	As	 res 	 is
stack-allocated,	 there	 is	 no	 garbage	 generated	 after	 a	 call	 to	 fact 	 is	 evaluated.	When	 this	 style	 of
programming	is	done	in	C,	there	is	often	a	concern	about	the	pointer	to	 res 	being	derefenced	after	a
call	to	 fact 	returns,	which	is	commonly	referred	to	as	derefencing	a	dangling	pointer.	This	concern
is	completely	eliminated	in	ATS	as	it	is	required	by	the	type	system	of	ATS	that	a	linear	proof	of	the
at-view	 associated	 with	 the	 variable	 res 	 be	 present	 at	 the	 end	 of	 legal	 scope	 for	 res .	 More
specifically,	if	x	is	a	declared	variable	of	the	type	T,	then	a	linear	proof	of	the	view	 T?@L ,	where	L	is
the	 address	 of	 x,	 must	 be	 available	 when	 typechecking	 reaches	 the	 end	 of	 the	 scope	 for	 x.	 This
requirement	ensures	that	a	variable	can	no	longer	be	accessed	after	the	portion	of	the	stack	in	which	it
is	 allocated	 is	 reclaimed	 as	 no	 linear	 proof	 of	 the	 at-view	 associated	 with	 the	 variable	 is	 ever
available	from	that	point	on.

Arrays	in	ATS	can	also	be	stack-allocated.	For	instance,	 the	following	code	allocates	two	arrays	of
doubles	 in	 the	 frame	 of	 the	 function	 main0 	 and	 then	 passes	 them	 to	 dotprod 	 to	 compute	 their	 dot
product:

implement

main0	()	=

{

//

var	A	=	@[double][3](1.0)	//	initialized	with	1.0,	1.0,	1.0

var	B	=	@[double](1.0,	2.0,	3.0)	//	initialized	with	1.0,	2.0,	3.0

//

val	()	=	println!	("A	*	B	=	",	dotprod	(A,	B))	//	A	*	B	=	6.0

//

}	(*	end	of	[main0]	*)

The	at-view	associated	with	the	variable	A	is	 (@[double][3])@A ,	where	A	also	refers	to	the	address	of
the	variable	A.	Similarly,	the	at-view	associated	with	the	variable	B	is	 (@[double][3])@B .	For	the	sake
of	 completeness,	 I	 mention	 the	 syntax	 for	 uninitialized	 arrays	 as	 follows:	 Given	 a	 type	 T	 and	 an
integer	N,	the	syntax	 @[T][N]() 	is	for	an	array	consisting	of	N	uninitialized	values	of	type	T.

Note	that	allocating	large	arrays	in	the	call	frame	of	a	function	may	not	be	a	good	practice	as	doing
so	can	greatly	increase	the	likelihood	of	stack-overflow	at	run-time.

It	 is	 also	 allowed	 in	 ATS	 to	 allocate	 a	 closure	 in	 the	 call	 frame	 of	 a	 function.	 For	 instance,	 the
following	 code	 implements	 a	 function	 named	 foo 	 that	 stores	 a	 flat	 closure-function	 in	 a	 stack-
allocated	variable	named	 bar :

fun	foo

(

		x:	int,	y:	int

)	:	int	=	let

//

var	bar	=	lam@	():	int	=>	x	*	y

//

in

		bar	()

end	//	end	of	[foo]

Note	 that	 the	special	keyword	 lam@ 	 should	be	used	 to	 form	a	 flat	 closure-function.	For	 the	 sake	of
completeness,	I	present	another	example	as	follows	to	show	that	a	recursive	closure-function	can	also
be	stored	in	a	stack-allocated	variable:

fun	foo2

(

		x:	int,	y:	int

)	:	int	=	let

//

var	bar2	=	fix@	f	(x:	int):	int	=>	if	x	>	0	then	y	+	f(x-1)	else	0

//

in

		bar2	(x)

end	//	end	of	[foo]

Note	that	the	special	keyword	 fix@ 	should	be	used	to	form	a	flat	recursive	closure-function.

In	 a	 setting	where	 dynamic	memory	 allocation	 is	 not	 allowed,	 stack-allocated	 closures	 can	 play	 a
pivotal	role	in	supporting	programming	with	higher-order	functions.

Heap-Allocated	Linear	Closure-Functions

In	ATS,	a	closure-function	can	be	assiged	a	linear	type,	allowing	it	to	be	properly	tracked	within	the
type	system	and	also	explicitly	freed	by	the	programmer.

The	following	code	implements	a	higher-order	function	 list_map_cloptr 	which	takes	a	linear	closure-
function	as	its	second	argument:

fun{

a:t@ype}{b:vt@ype

}	list_map_cloptr{n:int}

(

		xs:	list	(a,	n),	f:	!(a)	-<cloptr1>	b

)	:	list_vt	(b,	n)	=

(

		case+	xs	of

		|	list_nil	()	=>	list_vt_nil	()

		|	list_cons	(x,	xs)	=>	list_vt_cons	(f	(x),	list_map_cloptr<a>	(xs,	f))

)

Note	 that	 the	 keyword	 -<cloptr1> 	 indicates	 that	 the	 function	 type	 it	 forms	 is	 for	 a	 linear	 closure-
function.	If	a	type	for	a	pure	linear	closure-function	is	needed,	the	keyword	 -<cloptr0> 	can	be	used.
The	 symbol	 ! 	 in	 front	 of	 the	 function	 type	 means	 that	 the	 second	 (linear)	 argument	 of
list_map_cloptr 	is	call-by-value	and	it	is	still	available	after	 list_map_cloptr 	returns.

Let	us	now	see	some	concrete	code	in	which	a	linear	closure-function	is	created,	called,	and	finally
freed:

implement

main0	()	=

{

//

val	xs	=

$list_vt{int}(0,	1,	2,	3,	4)

//

val	len	=	list_vt_length	(xs)

//

val	f	=	lam	(x:	int):	int	=<cloptr1>	x	*	len

//

val	ys	=

list_map_cloptr<int><int>	($UNSAFE.list_vt2t(xs),	f)

//

val	()	=	cloptr_free($UNSAFE.castvwtp0{cloptr(void)}(f))

//

val	()	=	println!	("xs	=	",	xs)	//	xs	=	0,	1,	2,	3,	4

val	()	=	println!	("ys	=	",	ys)	//	ys	=	0,	5,	10,	15,	20

//

val	((*freed*))	=	list_vt_free	(xs)

val	((*freed*))	=	list_vt_free	(ys)

//

}	(*	end	of	[main0]	*)

The	function	 cloptr_free 	is	given	the	following	interface:

fun	cloptr_free{a:t0p}(pclo:	cloptr	(a)):<!wrt>	void

Also,	the	cast	involved	in	 $UNSAFE.castvwtp0{cloptr(void)}(f) 	is	a	safe	cast.

The	support	for	linear	closure-functions	in	ATS1	is	crucial	in	a	setting	where	higher-order	functions
are	 needed	 but	 run-time	 garbage	 collection	 (GC)	 is	 not	 allowed	 or	 supported.	 In	 ATS2,	 linear
closure-functions	 become	 much	 less	 important	 as	 programming	 with	 higher-order	 functions	 in	 a
setting	without	GC	can	be	more	conveniently	achieved	through	the	use	of	templates.	However,	if	one
wants	to	store	closure-functions	in	a	data	structure	without	causing	memory	leaks,	it	is	necessary	to
use	linear	closure-functions	unless	GC	can	be	relied	upon	to	reclaim	memory.

Chapter	14.	Dataviews	as	Linear	Dataprops
The	at-views	of	the	form	 T@L 	for	types	T	and	addresses	L	are	building	blocks	for	constructing	other
forms	of	views.	One	mechanism	for	putting	together	such	building	blocks	is	by	declaring	dataviews,
which	 is	 mostly	 identical	 to	 declaring	 dataprops.	 I	 now	 present	 in	 this	 chapter	 some	 commonly
encountered	dataviews	and	their	uses.

Please	find	on-line	the	code	presented	for	illustration	in	this	chapter.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_DATAVIEW/

Optional	Views

The	dataview	 option_v 	is	declared	as	follows:

dataview	option_v	(v:view+,	bool)	=

		|	Some_v	(v,	true)	of	(v)	|	None_v	(v,	false)	of	()

This	declaration	indicates	 that	 the	dataview	 option_v 	 is	covariant	 in	 its	 first	argument	and	 there	are
two	proof	constructors	associated	with	it:	 Some_v 	and	 None_v .	Given	a	view	V,	 option_v(V,	b) 	is	often
called	an	optional	view,	where	b	is	a	boolean.	Clearly,	a	proof	of	the	view	 option_v(V,	true) 	contains
a	proof	of	the	view	V	while	a	proof	the	view	 option_v(V,	false) 	contains	nothing.

As	an	example,	the	following	function	interface	involves	a	typical	use	of	optional	view:

fun{a:t@ype}

ptr_alloc_opt	():	[l:addr]	(option_v	(a?	@	l,	l	>	null)	|	ptr	l)

Given	 a	 type	T,	 the	 function	 ptr_alloc_opt<T> 	 returns	 a	 pointer	 paired	with	 a	 proof	 of	 an	 optional
view;	if	the	returned	pointer	is	not	null,	then	the	proof	can	be	turned	into	a	proof	of	the	view	 T?@L ,
where	L	is	the	location	to	which	the	pointer	points;	otherwise,	there	is	no	at-view	associated	with	the
returned	pointer.

Disjunctive	Views

The	dataview	 VOR 	is	declared	as	follows:

dataview	VOR	(v0:view+,	v1:view+,	int)	=

		|	VORleft	(v0,	v1,	0)	of	(v0)	|	VORright	(v0,	v1,	1)	of	(v1)

This	 declaration	 indicates	 that	 the	 dataview	 VOR 	 is	 covariant	 in	 its	 first	 and	 second	 arguments	 and
there	are	two	proof	constructors	associated	with	it:	 VORleft 	and	 VORright .	Given	views	V0	and	V1,	a
proof	of	 VOR(V0,	V1,	0) 	can	be	turned	into	a	proof	of	V0	and	a	proof	of	 VOR(V0,	V1,	1) 	can	be	turned
into	a	proof	of	V1.

Let	T	be	some	type.	The	following	function	interface	states	that	 getopt 	 takes	an	unintialized	pointer
and	returns	an	integers	indicating	whether	the	pointer	is	initialized:

fun	getopt{l:addr}

		(pf:	T?	@	l	|	ptr	(l)):	[i:int]	(VOR	(T?	@	l,	T	@	l,	i)	|	int	(i))

The	following	code	shows	a	typical	use	of	 getopt :

fun	foo	():	void	=	let

		var	x:	T?

		val	(pfor	|	i)	=	getopt	(view@(x)	|	addr@(x))

in

//

if	i	=	0

		then	let

				prval	VORleft	(pf0)	=	pfor	in	view@(x)	:=	pf0	//	uninitialized

		end	//	end	of	[then]

		else	let

				prval	VORright	(pf1)	=	pfor	in	view@(x)	:=	pf1	//	initialized

		end	//	end	of	[else]

//	end	of	[if]

//

end	//	end	of	[foo]

In	ATS,	there	is	a	type	constructor	 opt 	that	takes	a	type	T	and	a	boolean	B	to	form	an	opt-type	 opt(T,
B) 	such	that	 opt(T,	B) 	equals	T	if	B	is	true	and	it	equals	T?	if	B	is	false.	The	function	 getopt 	can	be
given	the	following	interface	that	makes	use	of	an	opt-type:

fun	getopt	(x:	&T?	>>	opt	(T,	b)):	#[b:bool]	bool(b)

The	code	that	calls	 getopt 	can	now	be	implemented	as	follows:

fun	foo	():	void	=	let

		var	x:	T?

		val	ans	=	getopt	(x)

in

//

if	(ans)

		then	let

				prval	()	=	opt_unsome(x)	in	(*initialized*)

		end	//	end	of	[then]

		else	let

				prval	()	=	opt_unnone(x)	in	(*uninitialized*)

		end	//	end	of	[else]

//	end	of	[if]

//

end	//	end	of	[foo]

where	the	proof	functions	 opt_unsome 	and	 opt_unnone 	are	assgined	the	following	types:

prfun	opt_unsome{a:t@ype}	(x:	!opt	(a,	true)	>>	a):	void

prfun	opt_unnone{a:t@ype}	(x:	!opt	(a,	false)	>>	a?):	void

Compared	to	the	version	that	uses	 VOR ,	this	version	based	on	opt-type	is	considerably	less	verbose.

Dataview	for	Linear	Arrays

Unlike	 in	 most	 programming	 languages,	 arrays	 are	 not	 a	 primitive	 data	 structure	 in	 ATS.	 More
specifically,	persistent	arrays	can	be	implemented	based	on	linear	arrays,	which	allow	for	being	freed
safely	by	 the	programmer,	and	 linear	arrays	can	be	 implemented	based	on	at-views.	 Intuitively,	 the
view	for	an	array	storing	N	elements	of	type	T	consists	of	N	at-views:	T@L0,	T@L1,	...,	and	T@LN-1,
where	L0	is	the	starting	address	of	the	array	and	each	subsequent	L	equals	the	previous	one	plus	the
size	of	T,	that	is,	the	number	of	bytes	needed	to	store	a	value	of	the	type	T.	The	following	declared
dataview	 array_v 	precisely	captures	this	intuituion:

dataview

array_v	(

		a:t@ype+	//	covariant	argument

,	addr(*beg*)

,	int(*size*)

)	=	//	array_v

		|	{l:addr}

				array_v_nil	(a,	l,	0)

		|	{l:addr}{n:nat}

				array_v_cons	(a,	l,	n+1)	of	(a	@	l,	array_v	(a,	l+sizeof(a),	n))

//	end	of	[array_v]

Given	a	type	T,	an	address	L	and	an	integer	N,	 array_v(T,	L,	N) 	is	a	view	for	the	array	starting	at	L
that	 stores	N	 elements	 of	 the	 type	T.	As	 can	 be	 readily	 expected,	 the	 function	 templates	 for	 array-
accessing	and	array-updating	are	given	the	following	interfaces:

fun{

a:t@ype

}	arrget{l:addr}{n,i:nat	|	i	<	n}

		(pf:	!array_v	(a,	l,	n)	|	p:	ptr	l,	i:	int	i):	a

//	end	of	[arrget]	//	end	of	[fun]

fun{

a:t@ype

}	arrset{l:addr}{n,i:nat	|	i	<	n}

		(pf:	!array_v	(a,	l,	n)	|	p:	ptr	l,	i:	int	i,	x:	a):	void

//	end	of	[arrset]	//	end	of	[fun]

Before	implementing	 arrget 	and	 arrset ,	I	present	as	follows	some	code	that	implements	a	function
template	to	access	the	first	element	of	a	nonempty	array:

fun{

a:t@ype

}	arrgetfst{l:addr}{n:pos}

(

		pf:	!array_v	(a,	l,	n)	|	p:	ptr	l

)	:	a	=	x	where	{

		prval	array_v_cons	(pf1,	pf2)	=	pf

		//	pf1:	a	@	l;	pf2:	array_v	(a,	l+sizeof(a),	n-1)

		val	x	=	!p

		prval	()	=	pf	:=	array_v_cons	(pf1,	pf2)

}	//	end	of	[arrgetfst]

Obviously,	the	function	template	 arrget 	can	be	implemented	based	on	 arrgetfst :

implement

{a}(*tmp*)

arrget	(pf	|	p,	i)	=

		if	i	>	0	then	let

				prval	array_v_cons	(pf1,	pf2)	=	pf

				val	x	=	arrget	(pf2	|	ptr_succ<a>	(p),	i-1)

				prval	()	=	pf	:=	array_v_cons	(pf1,	pf2)

		in

				x

		end	else

				arrgetfst	(pf	|	p)

		//	end	of	[if]

This	is	a	tail-recursive	implementation	of	time-complexity	O(n).	However,	the	very	point	of	having
arrays	 is	 to	 support	 O(1)-time	 accessing	 and	 updating	 operations.	 My	 initial	 effort	 spent	 on
implementing	such	operations	immediately	dawned	on	me	the	need	to	construct	proof	functions	for
supporting	view-changes	(of	no	run-time	cost).

Clearly,	an	array	starting	at	L	that	stores	N	elements	of	type	T	can	also	be	thought	of	as	two	arrays:
one	 starting	 at	 L	 that	 stores	 I	 elements	 while	 the	 other	 starting	 at	 L+I*sizeof(T)	 that	 stores	 N-I
elements,	where	I	is	an	natural	number	less	that	or	equal	to	N.	Formally,	this	statement	can	be	encoded
in	the	type	of	the	proof	function	 array_v_split :

prfun

array_v_split

		{a:t@ype}

		{l:addr}{n,i:nat	|	i	<=	n}

(

		pfarr:	array_v	(a,	l,	n)

)	:	(array_v	(a,	l,	i),	array_v	(a,	l+i*sizeof(a),	n-i))

The	 other	 direction	 of	 the	 above	 statement	 can	 be	 encoded	 in	 the	 type	 of	 the	 proof	 function
array_v_unsplit :

prfun

array_v_unsplit

		{a:t@ype}

		{l:addr}{n1,n2:nat}

(

		pf1arr:	array_v	(a,	l,	n1),	pf2arr:	array_v	(a,	l+n1*sizeof(a),	n2)

)	:	array_v	(a,	l,	n1+n2)

With	 array_v_split 	and	 array_v_unsplit ,	we	can	readily	give	 implementations	of	 arrget 	and	 arrset
that	are	O(1)-time:

implement

{a}(*tmp*)

arrget{l}{n,i}

		(pf	|	p,	i)	=	x	where	{

		prval	(pf1,	pf2)	=	array_v_split{a}{l}{n,i}(pf)

		prval	array_v_cons	(pf21,	pf22)	=	pf2

		val	x	=	ptr_get1<a>	(pf21	|	ptr_add<a>	(p,	i))

		prval	pf2	=	array_v_cons	(pf21,	pf22)

		prval	()	=	pf	:=	array_v_unsplit{a}{l}{i,n-i}(pf1,	pf2)

}	(*	end	of	[arrget]	*)

implement

{a}(*tmp*)

arrset{l}{n,i}

		(pf	|	p,	i,	x)	=	()	where	{

		prval	(pf1,	pf2)	=	array_v_split{a}{l}{n,i}(pf)

		prval	array_v_cons	(pf21,	pf22)	=	pf2

		val	()	=	ptr_set1<a>	(pf21	|	ptr_add<a>	(p,	i),	x)

		prval	pf2	=	array_v_cons	(pf21,	pf22)

		prval	()	=	pf	:=	array_v_unsplit{a}{l}{i,n-i}(pf1,	pf2)

}	(*	end	of	[arrset]	*)

Of	course,	 the	proof	functions	 array_v_split 	and	 array_v_split 	are	still	 to	be	 implemented,	which	I
will	do	when	covering	the	topic	of	view-change.

Given	a	type	T,	an	address	L	and	a	natural	number	N,	a	proof	of	the	view	 array_v(T?,	L,	N) 	can	be
obtained	 and	 released	 by	 calling	 the	 functions	 malloc 	 and	 free ,	 respectively,	 which	 are	 to	 be
explained	 in	 details	 elsewhere.	 I	 now	 give	 as	 follows	 an	 implemention	 of	 a	 function	 template	 for
array	intialization:

typedef	natLt	(n:int)	=	[i:nat	|	i	<	n]	int	(i)

fun{a:t@ype}

array_ptr_tabulate

		{l:addr}{n:nat}

(

		pf:	!array_v	(a?,l,n)	>>	array_v	(a,l,n)

|	p:	ptr	(l),	n:	int	(n),	f:	natLt(n)	-<cloref1>	a

)	:	void	=	let

		fun	loop{l:addr}

				{i:nat	|	i	<=	n}	.<n-i>.

		(

				pf:	!array_v	(a?,l,n-i)	>>	array_v	(a,l,n-i)

		|	p:	ptr	l,	n:	int	n,	f:	natLt(n)	-<cloref1>	a,	i:	int	i

)	:	void	=

				if	i	<	n	then	let

						prval	array_v_cons	(pf1,	pf2)	=	pf

						val	()	=	!p	:=	f	(i)

						val	()	=	loop	(pf2	|	ptr_succ<a>	(p),	n,	f,	i+1)

				in

						pf	:=	array_v_cons	(pf1,	pf2)

				end	else	let

						prval	array_v_nil	()	=	pf	in	pf	:=	array_v_nil	{a}	()

				end	//	end	of	[if]

		//	end	of	[loop]

in

		loop	(pf	|	p,	n,	f,	0)

end	//	end	of	[array_ptr_tabulate]

Given	a	natural	number	n,	the	type	 natLt(n) 	is	for	all	natural	numbers	less	than	n.	Given	a	type	T,	the
function	 array_ptr_tabulate<T> 	 takes	 a	 pointer	 to	 an	 uninitialized	 array,	 the	 size	 of	 the	 array	 and	 a
function	f	that	maps	each	natural	number	less	than	n	to	a	value	of	the	type	T,	and	it	initializes	the	array
with	the	sequence	of	values	of	f(0),	f(1),	...,	and	f(n-1).	In	other	words,	the	array	stores	a	tabulation	of
the	given	function	f	after	the	initialization	is	over.

Given	a	type	T	and	an	integer	N,	@[T][N]	is	a	built-in	type	in	ATS	for	N	consecutive	values	of	the
type	T.	Therefore,	 the	 at-view	@[T][N]@L	 for	 any	given	 address	L	 is	 equivalent	 to	 the	 array-view
array_v(T,	L,	N) .	By	making	use	of	the	feature	of	call-by-reference,	we	can	also	assign	the	following
interfaces	to	the	previously	presented	functions	 arrget 	and	 arrset :

fun{

a:t@ype

}	arrget	{n,i:nat	|	i	<	n}	(A:	&(@[a][n]),	i:	int	i):	a

fun{

a:t@ype

}	arrset	{n,i:nat	|	i	<	n}	(A:	&(@[a][n]),	i:	int	i,	x:	a):	void

These	 interfaces	 are	more	 concise	 as	 they	 obviate	 the	 need	 to	mention	 explicitly	 where	 the	 array
argument	is	located.

Please	find	the	entirety	of	the	above	presented	code	on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_DATAVIEW/array.dats

Dataview	for	Linear	Strings

The	following	dataview	 strbuf_v 	captures	the	notion	of	a	string	in	C,	which	consisits	a	sequence	of
non-null	characters	followed	by	the	null	character.

Dataview	for	Singly-Linked	Lists

The	following	dataview	 slseg_v 	captures	the	notion	of	a	singly-linked	list	segment:

dataview

slseg_v	(

		a:t@ype+	//	covariant	argument

,	addr(*beg*)

,	addr(*end*)

,	int(*length*)

)	=	//	slseg_v

		|	{l:addr}

				slseg_v_nil	(a,	l,	l,	0)	of	()

		|	{l_fst:agz}{l_nxt,l_end:addr}{n:nat}

				slseg_v_cons	(a,	l_fst,	l_end,	n+1)	of

						((a,	ptr	l_nxt)	@	l_fst,	slseg_v	(a,	l_nxt,	l_end,	n))

//	end	of	[slseg]_v

There	 are	 two	proof	 constructors	 slseg_v_nil 	 and	 slseg_v_cons 	 associated	with	 slseg_v ,	 which	 are
assigned	the	following	types:

slseg_v_nil	:

		{a:t@ype}{l:addr}	()	->	slseg_v	(a,	l,	l,	0)

slseg_v_cons	:

		{a:t@ype}{l_fst:agz}{l_nxt,l_end:addr}{n:nat}

		((a,	ptr	l_nxt)	@	l_fst,	slseg_v	(a,	l_nxt,	l_end,	n))	->	slseg_v	(a,	l_fst,	l_end,	n+1)

Note	that	 agz 	is	a	subset	sort	for	addresses	that	are	not	null.	Given	a	type	T,	two	addresses	L1	and	L2,
and	a	natural	number	N,	the	view	 slseg_v(T,	L1,	L2,	N) 	is	for	a	singly-linked	list	segment	containing
N	elements	of	the	type	T	that	starts	at	L1	and	finishes	at	L2.	In	the	case	where	L2	is	the	null	pointer,
then	the	list	segment	is	considered	a	list	as	is	formally	defined	below:

viewdef	slist_v

		(a:t@ype,	l:addr,	n:int)	=	slseg_v	(a,	l,	null,	n)

//	end	of	[slist_v]

Given	a	 type	T,	a	pointer	pointing	to	L	plus	a	proof	of	 the	view	 slist_v(T,	 L,	 N) 	 for	some	natural
number	N	is	essentially	the	same	as	a	pointer	to	a	struct	of	the	following	declared	type	 slist_struct 	in
C:

typedef

struct	slist	{

		T	data	;	/*	[T]	matches	the	corresponding	type	in	ATS	*/

		struct	slist	*next	;	/*	pointing	to	the	tail	of	the	list	*/

}	slist_struct	;

Let	us	now	see	a	simple	example	involving	singly-linked	lists:

fn{a:t@ype}

slist_ptr_length

		{l:addr}{n:nat}

(

		pflst:	!slist_v	(a,	l,	n)	|	p:	ptr	l

)	:	int	(n)	=	let

		fun	loop

				{l:addr}{i,j:nat}	.<i>.

		(

				pflst:	!slist_v	(a,	l,	i)	|	p:	ptr	l,	j:	int	(j)

)	:	int	(i+j)	=

				if	p	>	0	then	let

						prval	slseg_v_cons	(pfat,	pf1lst)	=	pflst

						val	res	=	loop	(pf1lst	|	!p.1,	j+1)	//	!p.1	points	to	the	tail

						prval	()	=	pflst	:=	slseg_v_cons	(pfat,	pf1lst)

				in

						res

				end	else	let	//	the	length	of	a	null	list	is	0

						prval	slseg_v_nil	()	=	pflst	in	pflst	:=	slseg_v_nil	();	j

				end	(*	end	of	[if]	*)

		//	end	of	[loop]

in

		loop	(pflst	|	p,	0)

end	//	end	of	[slist_ptr_length]

The	function	template	 slist_ptr_length 	computes	the	length	of	a	given	singly-linked	list.	Note	that	the
inner	 function	 loop 	 is	 tail-recursive.	 The	 above	 implementation	 of	 slist_ptr_length 	 essentially
corresponds	to	the	following	implementation	in	C:

int	slist_ptr_length	(slist_struct	*p)	{

		int	res	=	0	;

		while	(p	!=	NULL)	{	res	=	res	+	1	;	p	=	p->next	;	}

		return	res	;

}	//	end	of	[slist_ptr_length]

As	another	example,	the	following	function	template	 slist_ptr_reverse 	 turns	a	given	linked	list	 into
its	reverse:

fn{a:t@ype}

slist_ptr_reverse

		{l:addr}{n:nat}

(

		pflst:	slist_v	(a,	l,	n)	|	p:	ptr	l

)	:	[l:addr]	(slist_v	(a,	l,	n)	|	ptr	l)	=	let

		fun	loop

				{n1,n2:nat}

				{l1,l2:addr}	.<n1>.	(

				pf1lst:	slist_v	(a,	l1,	n1)

		,	pf2lst:	slist_v	(a,	l2,	n2)

		|	p1:	ptr	l1,	p2:	ptr	l2

)	:	[l:addr]	(slist_v	(a,	l,	n1+n2)	|	ptr	l)	=

				if	p1	>	0	then	let

						prval	slseg_v_cons	(pf1at,	pf1lst)	=	pf1lst

						val	p1_nxt	=	!p1.1

						val	()	=	!p1.1	:=	p2

				in

						loop	(pf1lst,	slseg_v_cons	(pf1at,	pf2lst)	|	p1_nxt,	p1)

				end	else	let

						prval	slseg_v_nil	()	=	pf1lst	in	(pf2lst	|	p2)

				end	//	end	of	[if]

in

		loop	(pflst,	slseg_v_nil	|	p,	the_null_ptr)

end	//	end	of	[slist_ptr_reverse]

By	 translating	 the	 tail-recursive	 function	 loop 	 into	 a	 while-loop,	 we	 can	 readily	 turn	 the
implementation	of	 slist_ptr_reverse 	in	ATS	into	the	following	implementation	in	C:

slist_struct*

slist_ptr_reverse	(slist_struct	*p)

{

		slist_struct	*tmp,	*res	=	NULL	;

		while	(p	!=	NULL)	{

				tmp	=	p->next	;	p->next	=	res	;	res	=	p	;	p	=	tmp	;

		}

		return	res	;

}	//	end	of	[slist_ptr_reverse]

Let	us	see	yet	another	example.	List	concatenation	is	a	common	operation	on	lists.	This	time,	we	first
give	an	implementation	of	list	concatenation	in	C:

slist_struct*

slist_ptr_append

		(slist_struct	*p,	slist_struct	*q)	{

		slist_struct	*p1	=	p	;

		if	(p1	==	NULL)	return	q	;

		while	(p1->next	!=	NULL)	p1	=	p1->next	;	p1->next	=	q	;

		return	p	;

}	//	end	of	[slist_ptr_append]

The	algorithm	is	straightforward.	If	 p 	is	null,	then	 q 	is	returned.	Otherwise,	the	last	node	in	the	list
pointed	 to	 by	 p 	 is	 first	 found	 and	 its	 field	 of	 the	 name	 next 	 then	 replaced	 with	 q .	 This
implementation	of	 slist_ptr_append 	in	C	can	be	translated	directly	into	to	the	following	one	in	ATS:

fn{a:t@ype}

slist_ptr_append

		{l1,l2:addr}{n1,n2:nat}

(

		pf1lst:	slist_v	(a,	l1,	n1)

,	pf2lst:	slist_v	(a,	l2,	n2)

|	p1:	ptr	l1,	p2:	ptr	l2

)	:	[l:addr]	(slist_v	(a,	l,	n1+n2)	|	ptr	l)	=	let

		fun	loop

				{n1,n2:nat}

				{l1,l2:addr	|	l1	>	null}	.<n1>.	(

				pf1lst:	slist_v	(a,	l1,	n1)

		,	pf2lst:	slist_v	(a,	l2,	n2)

		|	p1:	ptr	l1,	p2:	ptr	l2

)	:	(slist_v	(a,	l1,	n1+n2)	|	void)	=	let

				prval	slseg_v_cons	(pf1at,	pf1lst)	=	pf1lst

				val	p1_nxt	=	!p1.1

		in

				if	p1_nxt	>	0	then	let

						val	(pflst	|	())	=	loop	(pf1lst,	pf2lst	|	p1_nxt,	p2)

				in

						(slseg_v_cons	(pf1at,	pflst)	|	())

				end	else	let

						val	()	=	!p1.1	:=	p2

						prval	slseg_v_nil	()	=	pf1lst

				in

						(slseg_v_cons	(pf1at,	pf2lst)	|	())

				end	(*	end	of	[if]	*)

		end	//	end	of	[loop]

in

		if	p1	>	0	then	let

				val	(pflst	|	())	=	loop	(pf1lst,	pf2lst	|	p1,	p2)

		in

				(pflst	|	p1)

		end	else	let

				prval	slseg_v_nil	()	=	pf1lst	in	(pf2lst	|	p2)

		end	(*	end	of	[if]	*)

end	//	end	of	[slist_ptr_append]

In	the	above	examples,	it	is	evident	that	the	code	in	ATS	is	a	lot	more	verbose	than	its	counterpart	in
C.	However,	 the	 former	 is	 also	a	 lot	more	 robust	 than	 the	 latter	 in	 the	 following	sense:	 If	 a	minor
change	is	made	to	the	code	in	ATS	(e.g.,	renaming	identifiers,	reordering	function	arguments),	 it	 is
most	 likely	 that	 a	 type-error	 is	 to	be	 reported	when	 the	changed	code	 is	 typechecked.	On	 the	other
hand,	the	same	thing	cannot	be	said	about	the	code	written	in	C.	For	instance,	the	following	erroneous
implementation	of	 slist_ptr_reverse 	in	C	is	certainly	type-correct:

/*

**	This	implementation	is	*incorrect*	but	type-correct:

*/

slist_struct*

slist_ptr_reverse

		(slist_struct	*p)

{

		slist_struct	*tmp,	*res	=	NULL	;

		while	(p	!=	NULL)	{

				tmp	=	p->next	;	res	=	p	;	p->next	=	res	;	p	=	tmp	;

		}

		return	res	;

}	//	end	of	[slist_ptr_reverse]

I	now	point	out	that	the	dataview	 slseg_v 	is	declared	here	in	a	manner	that	does	not	address	the	issue
of	allocating	and	freeing	list	nodes,	and	it	is	done	so	for	the	sake	of	a	less	involved	presentation.	A
dataview	for	singly-linked	lists	that	does	handle	allocation	and	deallocation	of	list	nodes	can	also	be
declared	in	ATS,	but	there	is	really	little	need	for	it	as	we	can	declare	a	dataviewtype	for	such	lists	that
is	far	more	convenient	to	use.	However,	dataviews	are	fundamentally	more	general	and	flexible	than
dataviewtypes,	and	there	are	many	common	data	structures	(e.g.	doubly-linked	lists)	that	can	only	be
properly	handled	with	dataviews	in	ATS.

Proof	Functions	for	View-Changes

By	the	phrase	view-change,	I	mean	applying	a	function	to	proofs	of	a	set	of	views	to	turn	them	into
proofs	of	another	set	of	views.	As	 this	 function	 itself	 is	a	proof	 function,	 there	 is	no	 run-time	cost
associated	with	each	view-change.	For	instance,	a	proof	of	the	at-view	int32@L	for	any	address	L	can
be	turned	into	a	proof	of	a	tuple	of	4	at-views:	int8@L,	int8@L+1,	int8@L+2	and	int8@L+3,	where
int32	 and	 int8	 are	 types	 for	 32-bit	 and	 8-bit	 integers,	 respectively.	 Often	 more	 interesting	 view-
changes	involve	recursively	defined	proof	functions,	and	I	present	several	of	such	cases	in	the	rest	of
this	section.

When	 implementing	 an	 array	 subscripting	 operation	 of	 O(1)-time,	 we	 need	 a	 proof	 function	 to
change	 the	 view	 of	 one	 array	 into	 the	 views	 of	 two	 adjacently	 located	 arrays	 and	 another	 proof
function	 to	 do	 precisely	 the	 opposite.	 Formally	 speaking,	 we	 need	 to	 construct	 the	 following	 two
proof	functions	 array_v_split 	and	 array_v_unsplit :

prfun

array_v_split

		{a:t@ype}

		{l:addr}{n,i:nat	|	i	<=	n}

(

		pfarr:	array_v	(a,	l,	n)

)	:	(array_v	(a,	i,	l),	array_v	(a,	n-i,	l+i*sizeof(a)))

prfun

array_v_unsplit

		{a:t@ype}

		{l:addr}{n1,n2:nat}

(

		pf1arr:	array_v	(a,	l,	n1),	pf2arr:	array_v	(a,	l+n1*sizeof(a),	n2)

)	:	array_v	(a,	l,	n1+n2)

An	implementation	of	 array_v_split 	is	given	as	follows:

primplmnt

array_v_split

		{a}{l}{n,i}(pfarr)	=	let

		prfun	split

				{l:addr}{n,i:nat	|	i	<=	n}	.<i>.

		(

				pfarr:	array_v	(a,	l,	n)

)	:	(

				array_v	(a,	l,	i)

		,	array_v	(a,	l+i*sizeof(a),	n-i)

)	=

				sif	i	>	0	then	let

						prval	array_v_cons	(pf1,	pf2arr)	=	pfarr

						prval	(pf1res1,	pf1res2)	=	split{..}{n-1,i-1}	(pf2arr)

				in

						(array_v_cons	(pf1,	pf1res1),	pf1res2)

				end	else	let

						prval	EQINT	()	=	eqint_make{i,0}((*void*))

				in

						(array_v_nil	(),	pfarr)

				end	//	end	of	[sif]

in

		split	(pfarr)

end	//	end	of	[array_v_split]

Note	 that	 the	 keyword	 primplmnt 	 (instead	 of	 implement)	 should	 be	 used	 for	 implementing	 proof
functions.	One	 can	 also	 choose	 to	 use	 the	 keyword	 primplement 	 in	 place	 of	 primplmnt .	 Clearly,	 the
proof	 function	 split 	 directly	 encodes	 a	 proof	 based	 on	 mathematical	 induction.	 Following	 is	 an
implementation	of	 array_v_unsplit :

primplmnt

array_v_unsplit

		{a}{l}{n1,n2}

		(pf1arr,	pf2arr)	=	let

		prfun	unsplit

				{l:addr}{n1,n2:nat}	.<n1>.

		(

				pf1arr:	array_v	(a,	l,	n1)

		,	pf2arr:	array_v	(a,	l+n1*sizeof(a),	n2)

)	:	array_v	(a,	l,	n1+n2)	=

				sif	n1	>	0	then	let

						prval

						array_v_cons	(pf1,	pf1arr)	=	pf1arr

						prval	pfres	=	unsplit	(pf1arr,	pf2arr)

				in

						array_v_cons	(pf1,	pfres)

				end	else	let

						prval	array_v_nil	()	=	pf1arr	in	pf2arr

				end	//	end	of	[sif]

in

		unsplit	(pf1arr,	pf2arr)

end	//	end	of	[array_v_unsplit]

The	proof	function	 unsplit 	also	directly	encodes	a	proof	based	on	mathematical	induction.

Let	us	now	see	an	even	more	interesting	proof	function	for	performing	view-change.	The	interface	of
the	proof	function	 array_v_takeout 	is	given	as	follows:

prfun

array_v_takeout

		{a:t@ype}

		{l:addr}{n,i:nat	|	i	<	n}

(

		pfarr:	array_v	(a,	l,	n)

)	:	(a	@	l+i*sizeof(a),	a	@	l+i*sizeof(a)	-<lin,prf>	array_v	(a,	l,	n))

Note	that	the	following	type	is	for	a	linear	proof	function	that	takes	a	proof	of	an	at-view	to	return	a
proof	of	an	array-view:

a	@	l+i*sizeof(a)	-<lin,prf>	array_v	(a,	l,	n)

As	 such	 a	 function	 essentially	 represents	 an	 array	 with	 one	missing	 cell,	 we	may	 simply	 say	 that
array_v_takeout 	turns	the	view	of	an	array	into	an	at-view	(for	one	cell)	and	a	view	for	the	rest	of	the
array.	By	making	use	of	 array_v_takeout ,	we	can	give	another	implementation	of	 arrget :

implement

{a}(*tmp*)

arrget{l}{n,i}

		(pf	|	p,	i)	=	x	where	{

		prval	(pf1,	fpf2)	=

		array_v_takeout{a}{l}{n,i}	(pf)

		val	x	=	ptr_get1<a>	(pf1	|	ptr_add<a>	(p,	i))

		prval	()	=	pf	:=	fpf2	(pf1)	//	putting	the	cell	and	the	rest	together

}	(*	end	of	[arrget]	*)

The	proof	function	 array_v_takeout 	can	be	implemented	as	follows:

primplmnt

array_v_takeout

		{a}{l}{n,i}(pfarr)	=	let

		prfun	takeout

				{l:addr}{n,i:nat	|	i	<	n}	.<i>.

		(

				pfarr:	array_v	(a,	l,	n)

)	:	(

				a	@	l+i*sizeof(a)

		,	a	@	l+i*sizeof(a)	-<lin,prf>	array_v	(a,	l,	n)

)	=	let

				prval	array_v_cons	(pf1at,	pf1arr)	=	pfarr

		in

				sif	i	>	0	then	let

						prval	(pfres,	fpfres)	=	takeout{..}{n-1,i-1}(pf1arr)

				in

						(pfres,	llam	(pfres)	=>	array_v_cons	(pf1at,	fpfres	(pfres)))

				end	else	let

						prval	EQINT	()	=	eqint_make{i,0}((*void*))

				in

						(pf1at,	llam	(pf1at)	=>	array_v_cons	(pf1at,	pf1arr))

				end	//	end	of	[sif]

		end	//	end	of	[takeout]

in

		takeout{l}{n,i}(pfarr)

end	//	end	of	[array_v_takeout]

Note	 that	 llam 	 is	 a	 keyword	 for	 forming	 linear	 functons.	 Once	 a	 linear	 function	 is	 applied,	 it	 is
consumed	and	the	resource	in	it,	if	not	reclaimed,	moves	into	the	result	it	returns.

The	 proof	 functions	 presented	 so	 far	 for	 view-changes	 are	 all	 manipulating	 array-views.	 The
following	one	is	different	in	this	regard	as	it	combines	two	views	for	singly-linked	list	segments	into
one:

prfun

slseg_v_unsplit

		{a:t@ype}

		{l1,l2,l3:addr}{n1,n2:nat}

(

		pf1lst:	slseg_v	(a,	l1,	l2,	n1),	pf2lst:	slseg_v	(a,	l2,	l3,	n2)

)	:	slseg_v	(a,	l1,	l3,	n1+n2)

The	type	of	 slseg_v_unsplit 	essentially	states	that	a	list	segment	from	L1	to	L2	that	is	of	length	N1	and
another	list	segment	from	L2	to	L3	that	is	of	length	N2	can	be	thought	of	as	a	list	segment	from	L1	to
L3	 that	 is	of	 length	N1+N2.	The	following	 implementation	of	 slseg_v_unsplit 	 is	 largely	parallel	 to
that	of	 array_v_unsplit :

primplmnt

slseg_v_unsplit

		{a}(pf1lst,	pf2lst)	=	let

		prfun	unsplit

				{l1,l2,l3:addr}{n1,n2:nat}	.<n1>.

		(

				pf1lst:	slseg_v	(a,	l1,	l2,	n1),	pf2lst:	slseg_v	(a,	l2,	l3,	n2)

)	:	slseg_v	(a,	l1,	l3,	n1+n2)	=

				sif	n1	>	0	then	let

						prval	slseg_v_cons	(pf1at,	pf1lst)	=	pf1lst

				in

						slseg_v_cons	(pf1at,	unsplit	(pf1lst,	pf2lst))

				end	else	let

						prval	slseg_v_nil	()	=	pf1lst	in	pf2lst

				end	//	end	of	[sif]

in

		unsplit	(pf1lst,	pf2lst)

end	//	end	of	[slseg_v_unsplit]

The	reader	may	find	 it	 interesting	 to	give	an	 implementation	of	 slist_ptr_append 	by	making	use	of
slseg_v_unsplit .

Please	 find	 on-line	 the	 files	 array.dats	 and	 slist.dats,	 which	 contains	 the	 code	 employed	 for
illustration	in	this	section.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_DATAVIEW/array.dats
https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_DATAVIEW/slist.dats

Chapter	15.	Dataviewtypes	as	Linear	Datatypes
A	dataviewtype	can	be	thought	of	as	a	linear	version	of	datatype.	To	a	large	extent,	it	is	a	combination
of	 a	 datatype	 and	 a	 dataview.	 This	 programming	 feature	 is	 primarily	 introduced	 into	ATS	 for	 the
purpose	of	providing	in	the	setting	of	manual	memory	management	the	kind	of	convenience	brought
by	 pattern	 matching.	 In	 a	 situation	 where	 GC	 must	 be	 reduced	 or	 even	 completely	 eliminated,
dataviewtypes	can	often	be	chosen	as	a	replacement	for	datatypes.	I	now	present	in	this	chapter	some
commonly	encountered	dataviewtypes	and	their	uses.

Linear	Optional	Values

When	an	optional	value	is	created,	the	value	is	most	likely	to	be	used	immediately	and	then	discarded.
If	such	a	value	is	assigned	a	 linear	 type,	 then	the	memory	allocated	for	storing	it	can	be	efficiently
reclaimed.	The	dataviewtype	 option_vt 	for	linear	optional	values	is	declared	as	follows:

datavtype

option_vt	(a:t@ype+,	bool)	=

		|	Some_vt	(a,	true)	of	a	|	None_vt	(a,	false)	of	()

//	end	of	[option_vt]

vtypedef	Option_vt	(a:t@ype)	=	[b:bool]	option_vt	(a,	b)

Note	that	 datavtype 	is	just	the	short	version	of	 dataviewtype .	The	introduced	dataviewtype	 option_vt 	is
covariant	in	its	first	argument	and	there	are	two	data	constructors	 Some_vt 	and	 None_vt 	associated	with
it.	In	the	following	example,	 find_rightmost 	tries	to	find	the	rightmost	element	in	a	list	that	satisfies	a
given	predicate:

fun{a:t@ype}

find_rightmost

		{n:nat}	.<n>.

(

		xs:	list	(a,	n),	P:	(a)	-<cloref1>	bool

)	:	Option_vt	(a)	=

(

		case+	xs	of

		|	list_cons	(x,	xs)	=>	let

						val	opt	=	find_rightmost	(xs,	P)

				in

						case	opt	of

						|	~None_vt	()	=>	if	P	(x)	then	Some_vt	(x)	else	None_vt	()

						|	_	(*Some_vt*)	=>	opt

				end	//	end	of	[list_cons]

		|	list_nil	()	=>	None_vt	()

)	(*	end	of	[find_rightmost]	*)

Note	that	the	tilde	symbol	(~)	in	front	of	the	pattern	 None_vt() 	indicates	that	the	memory	for	the	node
that	matches	the	pattern	is	freed	before	 the	body	of	 the	matched	clause	is	evaluated.	In	 this	case,	no
memory	 is	 actually	 freed	 as	 None_vt 	 is	mapped	 to	 the	 null	 pointer.	 I	will	 soon	 give	more	 detailed
explanation	about	freeing	memory	allocated	for	constructors	associated	with	dataviewtypes.

As	another	example,	the	following	function	template	 list_optcons 	tries	to	construct	a	new	list	with	its

head	element	extracted	from	a	given	optional	value:

fn{a:t@ype}

list_optcons

		{b:bool}{n:nat}

(

		opt:	option_vt	(a,	b),	xs:	list	(a,	n)

)	:	list	(a,	n+bool2int(b))	=

		case+	opt	of

		|	~Some_vt	(x)	=>	list_cons	(x,	xs)	|	~None_vt	()	=>	xs

//	end	of	[list_optcons]

The	symbol	 bool2int 	stands	for	a	built-in	static	function	in	ATS	that	maps	 true 	and	 false 	to	1	and	0,
respectively.	 What	 is	 special	 here	 is	 that	 the	 first	 argument	 of	 list_optcons ,	 which	 is	 linear,	 is
consumed	after	a	call	to	 list_optcons 	returns	and	the	memory	it	occupies	is	reclaimed.

Linear	Lists

A	linear	list	is	essentially	the	same	as	a	singly-linked	list	depicted	by	the	dataview	 slist_v .	However,
memory	allocation	and	deallocation	of	list-nodes	not	handled	previously	are	handled	this	time.	The
following	 declaration	 introduces	 a	 linear	 datatype	 list_vt ,	which	 forms	 a	 boxed	 type	 (of	 the	 sort
viewtype)	when	applied	to	a	type	and	an	integer:

datavtype

list_vt	(a:t@ype+,	int)	=

		|	list_vt_nil	(a,	0)	of	()

		|	{n:nat}

				list_vt_cons	(a,	n+1)	of	(a,	list_vt	(a,	n))

//	end	of	[list_vt]

Given	a	type	T	and	an	integer	I,	 list_vt(T,	I) 	is	for	linear	lists	of	length	I	in	which	each	element	is	of
the	type	T.

Assume	 that	 a	 data	 constructor	 named	 foo	 is	 associated	 with	 a	 dataviewtype.	 Then	 there	 is	 a
corresponding	 viewtype	 construtor	 of	 the	 name	 foo_unfold	 that	 takes	 n+1	 addresses	 to	 form	 a
viewtype,	where	n	is	the	arity	of	foo.	For	instance,	there	is	a	viewtype	constructor	 list_vt_cons_unfold
that	takes	3	address	L0,	L1	and	L2	to	form	a	viewtype	 list_vt_cons_unfold(L0,	L1,	L2) .	This	viewtype
is	 for	 a	 list-node	 created	 by	 a	 call	 to	 list_vt_cons 	 such	 that	 the	 node	 is	 located	 at	 L0	 and	 the	 two
arguments	of	 list_vt_cons 	are	located	at	L1	and	L2	while	the	proofs	for	the	at-views	associated	with
L1	and	L2	are	put	in	the	store	for	currently	available	proofs.

The	following	function	template	 length 	computes	the	length	of	a	given	linear	list:

fn{

a:t@ype

}	length{n:nat}

		(xs:	!list_vt	(a,	n)):	int	n	=	let

		fun	loop

				{i,j:nat	|	i+j==n}	.<i>.

				(xs:	!list_vt	(a,	i),	j:	int	j):	int	(n)	=

				case+	xs	of

				|	list_vt_cons	(_,	xs1)	=>	loop	(xs1,	j+1)	|	list_vt_nil	()	=>	j

		//	end	of	[loop]

in

		loop	(xs,	0)

end	//	end	of	[length]

The	interface	of	 length 	indicates	that	 length<T> 	returns	an	integer	equal	to	I	when	applied	to	a	list	of
the	type	 list_vt(T,	I) ,	where	T	and	I	are	a	type	and	an	integer,	respectively.	Note	that	the	symbol	 ! 	in
front	of	the	type	of	a	function	argument	indicates	that	the	argument	is	call-by-value	and	it	is	preserved
after	 a	 call	 to	 the	 function.	 The	 function	 loop 	 inside	 the	 body	of	 length 	 is	 tail-recursive.	Given	 a
linear	list	and	an	integer,	 loop 	returns	the	sum	of	the	length	of	the	list	and	the	integer.	In	the	body	of
loop ,	 if	 xs 	matches	 the	pattern	 list_vt_cons(_,	 xs1) ,	 then	 the	name	 xs1 	 is	bound	 to	 the	 tail	of	 xs .
Note	that	 xs1 	is	a	value	(instead	of	a	variable),	and	it	is	not	allowed	that	 xs1 	be	modified	into	another
value	(of	a	different	type).

Suppose	 that	we	do	want	 to	modify	 the	content	 stored	 in	 a	 list-node.	For	 instance,	we	may	want	 to
double	 the	 value	 of	 each	 integer	 stores	 in	 a	 linear	 integer	 list.	 The	 following	 code	 implements	 a
function	named	 list_vt_2x 	that	does	precisely	this:

fun

list_vt_2x{n:nat}

		(xs:	!list_vt	(int,	n)	>>	_):	void	=

(

		case+	xs	of

		|	@list_vt_cons

						(x,	xs1)	=>	let

						val	()	=	x	:=	2	*	x

						val	()	=	list_vt_2x	(xs1)

						prval	()	=	fold@	(xs)

				in

						//	nothing

				end	//	end	of	[list_vt_cons]

		|	list_vt_nil	()	=>	()

)	(*	end	of	[list_vt_2x]	*)

Given	a	type	T,	the	notation	(!T	>>	_)	is	a	shorthand	for	(!T	>>	T).	Note	that	the	special	symbol	 @ 	in
front	of	the	pattern	 list_vt_cons(x,	xs1) 	means	unfolding.	If	 xs 	matches	this	pattern,	then	 x 	and	 xs1
are	bound	to	the	pointers	pointing	to	some	memory	locations	L1	and	L2	where	the	head	and	tail	of	 xs
are	stored,	respectively,	and	the	type	of	 xs 	changes	into	 list_vt_cons_unfold(L0,	L1,	L2) 	for	L0	being
the	 location	 of	 the	 list-node	 referred	 to	 by	 xs .	 In	 the	 body	 of	 the	 clause	 guarded	 by	 the	 pattern
list_vt_cons(x,	xs1) ,	 x 	and	 xs1 	are	treated	as	variables	(which	are	a	form	of	left-value).	The	special
proof	function	 fold@ 	is	called	on	 xs 	to	fold	it	plus	the	proofs	of	at-views	attached	to	L1	and	L2	into	a
linear	list.

Let	us	now	see	an	example	where	linear	list-nodes	are	explicitly	freed:

fun{

a:t@ype

}	list_vt_free

		{n:nat}	.<n>.

		(xs:	list_vt	(a,	n)):	void	=

(

		case+	xs	of

		|	~list_vt_cons

						(x,	xs1)	=>	list_vt_free	(xs1)

		|	~list_vt_nil	((*void*))	=>	()

)	(*	end	of	[list_vt_free]	*)

Given	a	linear	list,	the	function	 list_vt_free 	frees	all	the	nodes	in	the	list.	Let	us	go	over	the	body	of
list_vt_free 	carefully.	If	 xs 	matches	the	pattern	 list_vt_cons(x,	xs1) ,	then	the	names	 x 	and	 xs1 	are
bound	to	the	head	and	tail	of	 xs ,	respectively;	the	special	symbol	 ~ 	in	front	of	the	pattern	indicates
that	the	list-node	referred	to	by	 xs 	is	freed	immediately	after	 xs 	matches	the	pattern.	If	 xs 	matches
the	 pattern	 list_vt_nil() ,	 no	 bindings	 are	 generated;	 the	 special	 symbol	 ~ 	 in	 front	 of	 the	 pattern
indicates	that	the	list-node	referred	to	by	 xs 	is	freed;	nothing	in	this	case	is	actually	freed	at	run-time
as	 list_vt_nil 	is	mapped	to	the	null	pointer.

It	is	also	possible	to	use	the	special	function	 free@ 	 to	explicitly	free	a	node	(also	called	a	skeleton)
left	in	a	linear	variable	after	the	variable	matches	a	pattern	formed	with	a	constructor	associated	with
some	dataviewtype.	For	instance,	the	following	code	gives	another	implementation	of	 list_vt_free :

fun{

a:t@ype

}	list_vt_free

		{n:nat}	.<n>.	(xs:	list_vt	(a,	n)):	void	=

		case+	xs	of

		|	@list_vt_cons

						(x,	xs1)	=>	let

						val	xs1_	=	xs1	//	[xs1_]	is	the	value	stored	in	[xs1]

						val	((*void*))	=	free@{a}{0}(xs)	in	list_vt_free	(xs1_)

				end	//	end	of	[list_vt_cons]

		|	@list_vt_nil	()	=>	free@{a}	(xs)

//	end	of	[list_vt_free]

As	it	can	be	a	bit	tricky	to	use	 free@ 	in	practice,	I	present	more	details	as	follows.	First,	let	us	note	that
the	 constructors	 list_vt_nil 	 and	 list_vt_cons 	 associated	 with	 list_vt 	 are	 assigned	 the	 following
types:

list_vt_nil	:	//	one	quantifier

		{a:t@ype}	()	->	list_vt	(a,	0)

list_vt_cons	:	//	two	quantifiers

		{a:t@ype}{n:nat}	(a,	list_vt	(a,	n))	->	list_vt	(a,	n+1)

If	 free@ 	is	applied	to	a	node	of	the	type	 list_vt_nil() ,	it	needs	one	static	argument,	which	is	a	type,	to
instantiate	the	quantifier	in	the	type	of	the	constructor	 list_vt_nil .	If	 free@ 	is	applied	to	a	node	of	the
type	 list_vt_cons_unfold(L0,	 L1,	 L2) ,	 then	 it	 needs	 two	 static	 arguments,	 which	 are	 a	 type	 and	 an
integer,	to	instantiate	the	two	quantifiers	in	the	type	of	the	constructor	 list_vt_cons .	In	the	case	where
the	 type	 of	 xs 	 is	 list_vt_cons_unfold(L0,	 L1,	 L2) ,	 typechecking	 the	 call	 free@{a}{0}(xs) 	 implicitly
consumes	a	proof	of	the	at-view	 a?@L1 	and	another	proof	of	the	at-view	 list_vt(a,	0)?@L2 .	As	there	is
no	difference	between	 list_vt(T,	 0)? 	 and	 list_vt(T,	 I)? 	 for	 any	T	 and	 I,	 the	 static	 argument	 0	 is
chosen	in	the	code.	As	a	matter	of	fact,	any	natural	number	can	be	used	in	place	of	0	as	the	second
static	argument	of	 free@ .

Linear	List-Reversing

The	following	code	implements	a	function	 reverse 	that	turns	a	given	linear	list	into	its	reverse:

fn{

a:t@ype

}	reverse{n:nat}

(

		xs:	list_vt	(a,	n)

)	:	list_vt	(a,	n)	=	let

		fun	revapp

				{i,j:nat	|	i+j==n}	.<i>.

		(

				xs:	list_vt	(a,	i),	ys:	list_vt	(a,	j)

)	:	list_vt	(a,	n)	=

				case+	xs	of

				|	@list_vt_cons

								(_,	xs1)	=>	let

								val	xs1_	=	xs1

								val	()	=	xs1	:=	ys

								prval	()	=	fold@	(xs)

						in

								revapp	(xs1_,	xs)

						end	//	end	of	[list_vt_cons]

				|	~list_vt_nil	((*void*))	=>	ys

		//	end	of	[revapp]

in

		revapp	(xs,	list_vt_nil)

end	//	end	of	[reverse]

The	type	assigned	to	 reverse 	indicates	that	the	function	returns	a	linear	list	of	the	same	length	as	the
one	it	consumes.	Note	that	the	inner	function	 revapp 	 is	tail-recursive.	This	implementation	of	linear
list-reversing	directly	corresponds	to	the	one	presented	previously	that	is	based	the	dataview	 slseg_v
(for	singly-linked	list	segments).	Comparing	the	two	implementations,	we	can	see	that	the	one	based
on	 dataviewtype	 is	 significantly	 simplified	 at	 the	 level	 of	 types.	 For	 instance,	 there	 is	 no	 explicit
mentioning	of	pointers	in	the	types	assigned	to	functions	 reverse 	and	 revapp .

Linear	List-Appending

The	following	code	implements	a	function	 append 	that	concatenates	two	given	linear	lists	into	one:

fn{

a:t@ype

}	append{m,n:nat}

(

		xs:	list_vt	(a,	m)

,	ys:	list_vt	(a,	n)

)	:	list_vt	(a,	m+n)	=	let

		fun	loop	{m,n:nat}	.<m>.	//	[loop]	is	tail-recursive

		(

				xs:	&list_vt	(a,	m)	>>	list_vt	(a,	m+n),	ys:	list_vt	(a,	n)

)	:	void	=

				case+	xs	of

				|	@list_vt_cons

								(_,	xs1)	=>	let

								val	()	=	loop	(xs1,	ys)	in	fold@	(xs)

						end	//	end	of	[list_vt_cons]

				|	~list_vt_nil	((*void*))	=>	xs	:=	ys

		//	end	of	[loop]

		var	xs:	List_vt	(a)	=	xs	//	creating	a	left-value	for	[xs]

		val	()	=	loop	(xs,	ys)

in

		xs

end	//	end	of	[append]

As	 the	call	 fold@(xs) 	 in	 the	body	of	 the	 function	 loop 	 is	 erased	 after	 typechecking,	 loop 	 is	 a	 tail-
recursive	 function.	 Therefore,	 append 	 can	 be	 called	 on	 lists	 of	 any	 length	 without	 the	 concern	 of
possible	 stack	overflow.	The	 type	 for	 the	 first	 argument	of	 loop 	 begins	with	 the	 symbol	 & ,	 which
indicates	that	this	argument	is	call-by-reference.	The	type	of	 loop 	simply	means	that	its	first	argument

is	changed	from	a	list	of	length	 m 	into	a	list	of	length	 m+n 	while	its	second	argument	is	consumed.

This	 implementation	 of	 list	 append	 essentially	 corresponds	 to	 the	 one	 presented	 previously	 that	 is
based	on	 the	dataview	 slseg_v .	Comparing	 these	 two,	we	can	easily	see	 that	 the	above	one	 is	much
simpler	and	cleaner,	demonstrating	concretely	some	advantage	of	dataviewtypes	over	dataviews.

This	 is	 also	 a	 good	 place	 for	 me	 to	 mention	 a	 closely	 related	 issue	 involving	 (functional)	 list
construction	and	tail-recursion.	Following	is	a	typical	implementation	of	functioal	list	concatenation:

fun{

a:t@ype

}	append1{m,n:nat}

(

		xs:	list	(a,	m),	ys:	list	(a,	n)

)	:	list	(a,	m+n)	=

		case+	xs	of

		|	list_cons	(x,	xs)	=>	list_cons	(x,	append1	(xs,	ys))

		|	list_nil	()	=>	ys

//	end	of	[append1]

Clearly,	 append1 	is	not	tail-recursive,	which	means	that	it	may	cause	stack	overflow	at	run-time	if	its
first	argument	is	very	long	(e.g.,	containing	1	million	elements).	There	is,	however,	a	direct	and	type-
safe	 way	 in	 ATS	 to	 implement	 functional	 list	 concatenation	 in	 a	 tail-recursive	 manner,	 thus
eliminating	 the	 concern	of	 potential	 stack	overflow.	For	 instance,	 the	 following	 implementation	of
append2 	returns	the	concatenation	of	two	given	functional	lists	while	being	tail-recursive:

fun{

a:t@ype

}	append2{m,n:nat}

(

		xs:	list	(a,	m),	ys:	list	(a,	n)

)	:	list	(a,	m+n)	=	let

//

fun	loop

		{m,n:nat}	.<m>.

(

		xs:	list	(a,	m),	ys:	list	(a,	n)

,	res:	&(List	a)?	>>	list	(a,	m+n)

)	:	void	=

(

		case+	xs	of

		|	list_cons

						(x,	xs)	=>	let

						val	()	=	

						res	:=	list_cons{a}{0}(x,	_)

						val+	list_cons	(_,	res1)	=	res

						val	()	=	loop	(xs,	ys,	res1)

						prval	((*void*))	=	fold@	(res)

				in

						//	nothing

				end	//	end	of	[list_cons]

		|	list_nil	()	=>	(res	:=	ys)

)	(*	end	of	[loop]	*)

//

var	res:	List(a)

val	()	=	loop	(xs,	ys,	res)

//

in

		res

end	//	end	of	[append2]

During	typechecking,	the	expression	 list_cons{a}{0}(x,	_) 	is	assigned	the	(linear)	type	 list_cons(L0,
L1,	L2) 	for	some	addresses	L0,	L1	and	L2	while	a	proof	of	the	at-view	 a@L1 	and	another	proof	of	the
at-view	 list(a,	 0)?@L2 	 are	 put	 into	 the	 store	 for	 currently	 available	 proofs.	 Note	 that	 the	 special
symbol	 _ 	 simply	 indicates	 that	 the	 tail	 of	 the	 newly	 constructed	 list	 is	 uninitialized.	 A	 partially
initialized	list	of	the	type	 list_cons(L0,	L1,	L2) 	is	guaranteed	to	match	the	pattern	 list_cons(_,	res1) ,
yielding	a	binding	between	 res1 	and	the	pointer	pointing	to	L2	where	the	(possibly	uninitialized)	tail
of	the	list	is	stored.	When	 fold@ 	is	called	on	a	variable	of	the	type	 list_cons(L0,	L1,	L2) ,	it	changes
the	type	of	the	variable	to	 list(T,	N+1) 	by	consuming	a	proof	of	the	at-view	 T@L1 	and	another	proof
of	the	at-view	 list(T,	N)@L2 ,	where	T	and	N	are	a	type	and	an	integer,	respectively.

Summary

With	 dataviewtypes,	 we	 can	 largely	 retain	 the	 convenience	 of	 pattern	 matching	 associated	 with
datatypes	while	supporting	explicit	memory	management.	Compared	to	dataviews,	dataviewtypes	are
less	 general.	However,	 if	 a	 dataviewtype	 can	be	 employed	 to	 solve	 a	 problem,	 then	 the	 solution	 is
often	significantly	simpler	and	cleaner	than	an	alternative	dataview-based	one.

Example:	Merge-Sort	on	Linear	Lists

When	 merge-sort	 is	 employed	 to	 sort	 an	 array	 of	 elements,	 it	 requires	 additional	 memory
proportionate	 to	 the	size	of	 the	array	 in	order	 to	move	 the	elements	around,	which	 is	considered	a
significant	 weakness	 of	 merge-sort.	 However,	 merge-sort	 does	 not	 have	 this	 requirement	 when	 it
operates	on	a	linear	list.	I	present	as	follows	an	implementation	of	merge-sort	on	linear	lists	that	can
readily	 rival	 its	 counterpart	 in	 C	 in	 terms	 of	 both	 time-efficiency	 and	 memory-efficiency.	 The
invariants	 captured	 in	 this	 implementation	 and	 the	 easiness	 to	 capture	 them	 should	 provide	 strong
evidence	that	attests	to	ATS	being	a	programming	language	capable	of	enforcing	great	precision	in
practical	programming.

Let	us	first	introduce	a	type	definition	and	an	interface	for	a	function	template	that	compares	elements
in	lists	to	be	sorted:

//

typedef	cmp	(a:t@ype)	=	(&a,	&a)	->	int

//

fun{a:t@ype}	compare	(x:	&a,	y:	&a,	cmp:	cmp	(a)):	int

//

The	interface	for	merge-sort	is	given	as	follows:

fun{

a:t@ype

}	mergeSort{n:nat}

		(xs:	list_vt	(a,	n),	cmp:	cmp	a):	list_vt	(a,	n)

//	end	of	[mergeSort]

The	 first	 argument	 of	 mergeSort 	 is	 a	 linear	 list	 (to	 be	 sorted)	 and	 the	 second	 one	 a	 function	 for
comparing	the	elements	in	the	linear	list.	Clearly,	the	interface	of	 mergeSort 	 indicates	 that	 mergeSort
consumes	 its	 first	 argument	 and	 then	 returns	 a	 linear	 list	 that	 is	 of	 the	 same	 length	 as	 its	 first
argument.	As	is	to	become	clear,	the	returned	linear	list	is	constructed	with	the	nodes	of	the	consumed
one.	 In	particular,	 the	 implementation	of	 mergeSort 	 given	as	 follows	does	not	 involve	any	memory
allocation	or	deallocation.

The	function	template	for	merging	two	sorted	lists	into	one	is	given	as	follows:

fun{

a:t@ype

}	merge{m,n:nat}	.<m+n>.

(

		xs:	list_vt	(a,	m),	ys:	list_vt	(a,	n)

,	res:	&List_vt(a)?	>>	list_vt	(a,	m+n)

,	cmp:	cmp	a

)	:	void	=

		case+	xs	of

		|	@list_vt_cons	(x,	xs1)	=>	(

				case+	ys	of

				|	@list_vt_cons	(y,	ys1)	=>	let

								val	sgn	=	compare<a>	(x,	y,	cmp)

						in

								if	sgn	<=	0	then	let	//	stable	sorting

										val	()	=	res	:=	xs

										val	xs1_	=	xs1

										prval	()	=	fold@	(ys)

										val	()	=	merge<a>	(xs1_,	ys,	xs1,	cmp)

								in

										fold@	(res)

								end	else	let

										val	()	=	res	:=	ys

										val	ys1_	=	ys1

										prval	()	=	fold@	(xs)

										val	()	=	merge<a>	(xs,	ys1_,	ys1,	cmp)

								in

										fold@	(res)

								end	//	end	of	[if]

						end	(*	end	of	[list_vt_cons]	*)

				|	~list_vt_nil	()	=>	(fold@	(xs);	res	:=	xs)

)	//	end	of	[list_vt_cons]

		|	~list_vt_nil	()	=>	(res	:=	ys)

//	end	of	[merge]

Unlike	 the	one	given	 in	a	previous	 functional	 implementation,	 this	 implementation	of	 merge 	 is	 tail-
recursive	and	thus	is	guaranteed	to	be	translated	into	a	loop	in	C	by	the	ATS	compiler.	This	means	that
the	concern	of	 merge 	being	unable	to	handle	very	long	lists	(e.g.,	containing	1	million	elements)	due
to	potential	stack	overflow	is	eliminated.

The	next	function	template	is	for	splitting	a	given	linear	lists	into	two:

fun{

a:t@ype

}	split{n,k:nat	|	k	<=	n}	.<n-k>.

(

		xs:	&list_vt	(a,	n)	>>	list_vt	(a,	n-k),	nk:	int	(n-k)

)	:	list_vt	(a,	k)	=

		if	nk	>	0	then	let

				val+@list_vt_cons(_,	xs1)	=	xs

				val	res	=	split<a>	(xs1,	nk-1);	prval	()	=	fold@(xs)

		in

				res

		end	else	let

				val	res	=	xs;	val	()	=	xs	:=	list_vt_nil	()	in	res

		end	//	end	of	[if]

//	end	of	[split]

Note	that	the	implementation	of	 split 	is	also	tail-recursive.

The	following	function	template	 msort 	takes	a	linear	list,	its	length	and	a	comparsion	function,	and	it
returns	a	sorted	version	of	the	given	linear	list:

fun{

a:t@ype

}	msort{n:nat}	.<n>.

(

		xs:	list_vt	(a,	n),	n:	int	n,	cmp:	cmp(a)

)	:	list_vt	(a,	n)	=

		if	n	>=	2	then	let

				val	n2	=	half(n)

				val	n3	=	n	-	n2

				var	xs	=	xs	//	lvalue	for	[xs]

				val	ys	=	split<a>	(xs(*cbr*),	n3)

				val	xs	=	msort<a>	(xs,	n3,	cmp)

				val	ys	=	msort<a>	(ys,	n2,	cmp)

				var	res:	List_vt	(a)	//	uninitialized

				val	()	=	merge<a>	(xs,	ys,	res(*cbr*),	cmp)

		in

				res

		end	else	xs

//	end	of	[msort]

The	second	argument	of	 msort 	is	passed	so	that	the	length	of	the	list	being	sorted	does	not	have	to	be
computed	directly	by	traversing	the	list	when	each	recursive	call	to	 msort 	is	made.

Finally,	 mergeSort 	can	be	implemented	with	a	call	to	 msort :

implement{a}

mergeSort	(xs,	cmp)	=	msort<a>	(xs,	length	(xs),	cmp)

By	 inspecting	 the	 implementation	 of	 split 	 and	 merge ,	 we	 can	 readiy	 see	 that	 mergeSort 	 performs
stable	sorting,	that	is,	it	preserves	the	order	of	equal	elements	during	sorting.

Please	find	on-line	 the	 entirety	of	 the	 code	presented	 in	 this	 section	plus	 some	additional	 code	 for
testing.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_DATAVTYPE/mergeSort.dats

Example:	Insertion	Sort	on	Linear	Lists

I	present	a	standard	implementation	of	insertion	sort	on	linear	lists	in	this	section.	The	interface	for
insertion	sort	is	given	as	follows:

fun{

a:t@ype

}	insertionSort{n:nat}

		(xs:	list_vt	(a,	n),	cmp:	cmp	a):	list_vt	(a,	n)

//	end	of	[insertionSort]

Like	 mergeSort ,	 insertionSort 	is	implemented	in	a	manner	that	makes	no	use	of	memory	allocation	or
deallocation.	Given	 a	 linear	 list,	 insertionSort 	 essentially	 shuffles	 the	 nodes	 in	 the	 list	 to	 form	 a
sorted	list.

The	following	code	implements	a	function	 insord 	that	inserts	a	given	list-node	into	a	sorted	linear	list
to	form	another	sorted	linear	list:

fun{

a:t@ype

}	insord

		{l0,l1,l2:addr}{n:nat}

(

		pf1:	a	@	l1

,	pf2:	list_vt	(a,	0)?	@	l2

|	xs0:	&list_vt	(a,	n)	>>	list_vt	(a,	n+1)

,	nx0:	list_vt_cons_unfold	(l0,	l1,	l2),	p1:	ptr	(l1),	p2:	ptr	(l2)

,	cmp:	cmp	(a)

)	:	void	=

(

		case+	xs0	of

		|	@list_vt_cons

						(x0,	xs1)	=>	let

						val	sgn	=	compare<a>	(x0,	!p1,	cmp)

				in

						if	sgn	<=	0	//	HX:	for	stableness:	[<=]	instead	of	[<]

								then	let

										val	()	=	insord<a>	(pf1,	pf2	|	xs1,	nx0,	p1,	p2,	cmp)

										prval	()	=	fold@	(xs0)

								in

										//	nothing

								end	//	end	of	[then]

								else	let

										prval	()	=	fold@	(xs0)

										val	()	=	(!p2	:=	xs0;	xs0	:=	nx0)

										prval	()	=	fold@	(xs0)

								in

										//	nothing

								end	//	end	of	[else]

						//	end	of	[if]

				end	//	end	of	[list_vt_cons]

		|	~list_vt_nil	()	=>

				{

						val	()	=	xs0	:=	nx0

						val	()	=	!p2	:=	list_vt_nil	()

						prval	()	=	fold@	(xs0)

				}

)	(*	end	of	[insord]	*)

The	 implementation	 of	 insord 	 is	 tail-recursive.	 The	 type	 assigned	 to	 insord 	 indicates	 that	 the
argument	xs0	of	 insord 	is	call-by-reference.	If	xs0	stores	a	list	of	length	n	when	 insord 	is	called,	then
it	stores	a	list	of	length	n+1	when	 insord 	returns.	The	arguments	nx0,	p1	and	p2	are	call-by-value,	and
they	should	be	bound	to	a	list-node	and	the	first	and	second	fields	in	the	list-node,	respectively,	when
a	call	to	 insord 	initiates.	The	proof	arguments	pf1	and	pf2	are	needed	so	that	the	pointers	bound	to	p1
and	p2	can	be	accessed	and	updated.

The	function	template	 insertionSort 	can	now	be	readily	implemented	based	 insord :

implement{a}

insertionSort

		(xs,	cmp)	=	let

//

fun	loop{m,n:nat}

(

		xs:	list_vt	(a,	m)

,	ys:	&list_vt	(a,	n)	>>	list_vt	(a,	m+n)

,	cmp:	cmp	(a)

)	:	void	=

		case+	xs	of

		|	@list_vt_cons

						(x,	xs1)	=>	let

						val	xs1_	=	xs1

						val	((*void*))	=

								insord<a>	(view@x,	view@xs1	|	ys,	xs,	addr@x,	addr@xs1,	cmp)

						//	end	of	[va]

				in

						loop	(xs1_,	ys,	cmp)

				end	//	end	of	[list_vt_cons]

		|	~list_vt_nil	((*void*))	=>	()

//

var	ys	=	list_vt_nil{a}()

val	()	=	loop	(xs,	ys,	cmp)

//

in

		ys

end	//	end	of	[insertionSort]

Clearly,	this	implementation	of	 insertionSort 	is	tail-recursive.	While	insertion	sort	is	of	O(n^2)-time
complexity,	it	is	often	more	efficient	than	merge-sort	or	quick-sort	when	sorting	very	short	lists.	For
instance,	we	may	implement	 msort 	(which	is	called	by	 mergeSort)	as	follows	by	taking	advantage	of
the	efficiency	of	 insertionSort 	on	short	lists:

fun{

a:t@ype

}	msort{n:nat}	.<n>.

(

		xs:	list_vt	(a,	n)

,	n:	int	n,	cmp:	cmp(a)

)	:	list_vt	(a,	n)	=	let

//

//	cutoff	is	selected	to	be	10

//

in

		if	n	>	10	then	let

				val	n2	=	half(n)

				val	n3	=	n	-	n2

				var	xs	=	xs	//	lvalue	for	[xs]

				val	ys	=	split<a>	(xs,	n3)

				val	xs	=	msort<a>	(xs,	n3,	cmp)

				val	ys	=	msort<a>	(ys,	n2,	cmp)

				var	res:	List_vt	(a)	//	uninitialized

				val	()	=	merge<a>	(xs,	ys,	res(*cbr*),	cmp)

		in

				res

		end	else	insertionSort<a>	(xs,	cmp)

end	//	end	of	[msort]

Note	that	the	stableness	of	 mergeSort 	is	maintained	as	 insertionSort 	also	performs	stable	sorting.

Please	find	the	entire	code	in	this	section	plus	some	additional	code	for	testing	on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_DATAVTYPE/insertionSort.dats

Example:	Quick-Sort	on	Linear	Lists

In	this	section,	I	give	an	implementation	of	quick-sort	on	linear	lists.	While	list-based	quick-sort	may
not	 be	 a	 preferred	 sorting	 method	 in	 practice,	 its	 implementation	 is	 nonetheless	 interesting.	 The
interface	for	quick-sort	is	given	as	follows:

fun{a:t@ype}

quickSort{n:nat}	(xs:	list_vt	(a,	n),	cmp:	cmp	a):	list_vt	(a,	n)

Like	 the	 implementation	of	 mergeSort 	 and	 insertionSort ,	 the	 implementation	of	 quickSort 	 given	 as
follows	makes	no	use	of	memory	allocation	and	deallocation.

The	following	code	implements	a	function	 takeout_node_at 	that	takes	out	a	node	from	a	linear	list	at	a
given	position:

fun{a:t@ype}

takeout_node_at

		{n:int}{k:nat	|	k	<	n}

(

		xs:	&list_vt	(a,	n)	>>	list_vt	(a,	n-1),	k:	int(k)

)	:	list_vt_cons_pstruct	(a,	ptr?)	=

(

//

if	k	>	0	then	let

		val+@list_vt_cons	(x,	xs1)	=	xs

		val	res	=	takeout_node_at<a>	(xs1,	k-1)

		prval	()	=	fold@	(xs)

in

		res

end	else	let

		val+@list_vt_cons	(x,	xs1)	=	xs

		val	nx	=	xs

		val	()	=	xs	:=	xs1

in

		$UNSAFE.castvwtp0	((view@x,	view@xs1	|	nx))	//	HX:	this	is	a	safe	cast

end	//	end	of	[if]

//

)	(*	end	of	[takeout_node_at]	*)

Assume	 that	 a	 data	 constructor	 named	 foo	 is	 associated	 with	 a	 dataviewtype.	 Then	 there	 is	 a
corresponding	 viewtype	 construtor	 of	 the	 name	 foo_pstruct	 that	 takes	 n	 types	 to	 form	 a	 viewtype,
where	n	is	the	arity	of	foo.	For	instance,	there	is	a	viewtype	constructor	 list_vt_cons_pstruct 	that	takes
2	types	T1	and	T2	to	form	a	viewtype	 list_vt_cons_pstruct(T1,	T2) .	This	viewtype	is	for	a	 list-node

created	by	a	call	to	 list_vt_cons 	such	that	the	two	arguments	of	 list_vt_cons 	are	of	types	T1	and	T2.
Essentially,	 list_vt_cons_pstruct(T1,	 T2) 	 stands	 for	 list_vt_cons_unfold(L0,	 L1,	 L2) 	 for	 some
addresses	L0,	L1	and	L2	plus	two	views	 T1@L1 	and	 T2@L2 .

A	key	step	in	quick-sort	lies	in	partitioning	a	linear	list	based	on	a	given	pivot.	This	step	is	fulfilled	by
the	following	code	that	implements	a	function	template	named	 partition :

fun{

a:t@ype

}	partition{n,r1,r2:nat}

(

		xs:	list_vt	(a,	n),	pvt:	&a

,	r1:	int(r1),	res1:	list_vt	(a,	r1),	res2:	list_vt	(a,	r2)

,	cmp:	cmp	(a)

)	:	[n1,n2:nat	|	n1+n2==n+r1+r2]

		(int(n1),	list_vt	(a,	n1),	list_vt	(a,	n2))	=

(

		case+	xs	of

		|	@list_vt_cons

						(x,	xs_tail)	=>	let

						val	xs_tail_	=	xs_tail

						val	sgn	=	compare<a>	(x,	pvt,	cmp)

				in

						if	sgn	<=	0	then	let

								val	r1	=	r1	+	1

								val	()	=	xs_tail	:=	res1

								prval	()	=	fold@	(xs)

						in

								partition<a>	(xs_tail_,	pvt,	r1,	xs,	res2,	cmp)

						end	else	let

								val	()	=	xs_tail	:=	res2

								prval	()	=	fold@	(xs)

						in

								partition<a>	(xs_tail_,	pvt,	r1,	res1,	xs,	cmp)

						end	//	end	of	[if]

				end	(*	end	of	[list_vt_cons]	*)

		|	~list_vt_nil	((*void*))	=>	(r1,	res1,	res2)

)	(*	end	of	[partition]	*)

The	implementation	of	 partition 	is	tail-recursive.	Given	a	linear	list	and	a	pivot,	 partition 	returns	a
tuple	(r1,	res1,	res2)	such	that	res1	contains	every	element	in	the	list	that	is	less	than	or	equal	to	the
pivot,	 res2	contains	 the	 rest,	 and	 r1	 is	 the	 length	of	 res1.	The	way	 in	which	 the	nodes	of	 the	given
linear	list	are	moved	into	res1	and	res2	is	quite	an	interesting	aspect	of	this	implementation.

By	making	use	of	 takeout_node_at 	and	 partition ,	we	can	readily	implement	 quickSort 	as	follows:

implement

{a}(*tmp*)

quickSort

		(xs,	cmp)	=	let

//

fun	sort{n:nat}

(

		xs:	list_vt	(a,	n),	n:	int	n

)	:	list_vt	(a,	n)	=

(

		if	n	>	10	then	let

				val	n2	=	half	(n)

				var	xs	=	xs

				val	nx	=	takeout_node_at<a>	(xs,	n2)

				val+list_vt_cons	(pvt,	nx_next)	=	nx

				val	(n1,	xs1,	xs2)	=

				partition<a>	(xs,	pvt,	0,	list_vt_nil,	list_vt_nil,	cmp)

				val	xs1	=	sort	(xs1,	n1)

				val	xs2	=	sort	(xs2,	n	-	1	-	n1)

				val	()	=	nx_next	:=	xs2

				prval	()	=	fold@	(nx)

		in

				list_vt_append	(xs1,	nx)

		end	else	insertionSort<a>	(xs,	cmp)

)	(*	end	of	[sort]	*)

//

in

		sort	(xs,	list_vt_length	(xs))

end	//	end	of	[quickSort]

Note	that	the	pivot	for	each	round	is	taken	from	the	middle	of	the	list	being	sorted,	which	can	be	time-
consuming	as	taking	out	a	node	from	the	middle	of	a	list	is	O(n)-time.	This	issue	can	be	addressed	by
always	choosing	 the	first	element	 to	be	 the	pivot.	However,	doing	so	can	often	 lead	 to	degenerated
O(n^2)-time	performance	of	quick-sort	in	practice.

Please	find	the	entire	code	in	this	section	plus	some	additional	code	for	testing	on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_DATAVTYPE/quickSort.dats

Linear	Binary	Search	Trees

A	binary	search	tree	with	respect	to	a	given	ordering	is	a	binary	tree	such	that	the	value	stored	in	each
node	inside	the	tree	is	greater	than	or	equal	to	those	stored	in	the	left	child	of	the	node	and	less	than
or	equal	to	those	stored	in	the	right	child	of	the	node.	Binary	search	trees	are	a	common	data	structure
for	implementing	finite	maps.

A	family	of	binary	trees	are	said	to	be	balanced	if	there	is	a	fixed	constant	C	(for	the	entire	family)
such	that	the	ratio	between	the	length	of	a	longest	path	and	the	length	of	a	shortest	path	is	bounded	by
C	for	every	tree	in	the	family.	For	instance,	common	examples	of	balanced	binary	trees	include	AVL
trees	and	red-black	trees.	Finite	maps	based	on	balanced	binary	search	trees	support	guaranteed	log-
time	insertion	and	deletion	operations,	that	is,	the	time	to	complete	such	an	operation	is	O(log(n))	in
the	worst	case,	where	n	is	the	size	of	the	map.

In	 this	 section,	 I	 am	 to	 implement	 several	 basic	 operations	 on	 linear	 binary	 search	 trees,	 further
illustrating	some	use	of	dataviewtypes.	Let	us	 first	declare	as	 follows	a	dataviewtype	 bstree_vt 	 for
linear	binary	(search)	trees:

datavtype

bstree_vt	(a:t@ype+,	int)	=

		|	bstree_vt_nil	(a,	0)	of	()

		|	{n1,n2:nat}

				bstree_vt_cons	(a,	n1+n2+1)	of	(bstree_vt	(a,	n1),	a,	bstree_vt	(a,	n2))

//	end	of	[bstree_vt]

Note	that	the	integer	index	of	 bstree_vt 	captures	the	size	information	of	a	binary	(search)	tree.	There
are	two	constructors	 bstree_vt_cons 	and	 bstree_vt_nil 	associated	with	 bstree_vt .	It	should	be	pointed
out	 that	 the	 tree	created	by	 bstree_vt_nil 	 is	empty	and	 thus	not	a	 leaf,	which	on	 the	other	hand	 is	a
node	 whose	 left	 and	 right	 children	 are	 both	 empty.	 As	 a	 simple	 example,	 the	 following	 function
template	 size 	computes	the	size	of	a	given	tree:

fun{

a:t@ype

}	size{n:nat}	.<n>.

(

		t:	!bstree_vt	(a,	n)

)	:	int	(n)	=

		case+	t	of

		|	bstree_vt_nil	()	=>	0

		|	bstree_vt_cons

					(tl,	_,	tr)	=>	1	+	size	(tl)	+	size	(tr)

//	end	of	[size]

Assume	 that	 we	 have	 a	 binary	 search	 tree	 with	 repect	 to	 some	 ordering.	 If	 a	 predicate	 P	 on	 the
elements	stored	in	the	tree	possesses	the	property	that	P(x1)	implies	P(x2)	whenever	x1	is	less	than	x2
(according	to	the	ordering),	then	we	can	locate	the	least	element	in	the	tree	that	satisfies	the	predicate
P	 by	 employing	 so-called	 binary	 search	 as	 is	 demonstrated	 in	 the	 following	 implementation	 of
search :

fun{

a:t@ype

}	search

		{n:nat}	.<n>.

(

		t:	!bstree_vt	(a,	n),	P:	(&a)	-<cloref>	bool

)	:	Option_vt	(a)	=

		case+	t	of

		|	@bstree_vt_cons

						(tl,	x,	tr)	=>

						if	P	(x)	then	let

								val	res	=	search	(tl,	P)

								val	res	=	(

										case+	res	of

										|	~None_vt	()	=>	Some_vt	(x)	|	_	=>	res

)	:	Option_vt	(a)

						in

								fold@	(t);	res

						end	else	let

								val	res	=	search	(tr,	P)	in	fold@	(t);	res

						end	//	end	of	[if]

		|	@bstree_vt_nil	()	=>	(fold@	(t);	None_vt	())

//	end	of	[search]

Clearly,	if	the	argument	 t 	of	 search 	ranges	over	a	family	of	balanced	trees,	then	the	time-complexity
of	 search 	is	O(log(n))	(assuming	that	 P 	is	O(1)).

Let	us	next	see	some	code	implementing	an	operation	that	inserts	a	given	element	into	a	binary	search
tree:

fun{

a:t@ype

}	insert{n:nat}	.<n>.

(

		t:	bstree_vt	(a,	n),	x0:	&a,	cmp:	cmp(a)

)	:	bstree_vt	(a,	n+1)	=

		case+	t	of

		|	@bstree_vt_cons

						(tl,	x,	tr)	=>	let

						val	sgn	=	compare<a>	(x0,	x,	cmp)

				in

						if	sgn	<=	0	then	let

								val	()	=	tl	:=	insert	(tl,	x0,	cmp)

						in

								fold@	(t);	t

						end	else	let

								val	()	=	tr	:=	insert	(tr,	x0,	cmp)

						in

								fold@	(t);	t

						end	(*	end	of	[if]	*)

				end	//	end	of	[bstree_vt_cons]

		|	~bstree_vt_nil	()	=>

						bstree_vt_cons	(bstree_vt_nil,	x0,	bstree_vt_nil)

				//	end	of	[bstree_vt_nil]

//	end	of	[insert]

When	inserting	an	element,	the	function	template	 insert 	extends	the	given	tree	with	a	new	leaf	node
containing	 the	 element,	 and	 this	 form	 of	 insertion	 is	 often	 referred	 to	 as	 leaf-insertion.	 There	 is
another	form	of	insertion	often	referred	to	as	root-insertion,	which	always	puts	at	the	root	position
the	 new	 node	 containing	 the	 inserted	 element.	 The	 following	 function	 template	 insertRT 	 is
implemented	to	perform	a	standard	root-insertion	operation:

fun{

a:t@ype

}	insertRT{n:nat}	.<n>.

(

		t:	bstree_vt	(a,	n),	x0:	&a,	cmp:	cmp(a)

)	:	bstree_vt	(a,	n+1)	=

		case+	t	of

		|	@bstree_vt_cons

						(tl,	x,	tr)	=>	let

						val	sgn	=	compare<a>	(x0,	x,	cmp)

				in

						if	sgn	<=	0	then	let

								val	tl_	=	insertRT	(tl,	x0,	cmp)

								val+@bstree_vt_cons	(_,	tll,	tlr)	=	tl_

								val	()	=	tl	:=	tlr

								prval	()	=	fold@	(t)

								val	()	=	tlr	:=	t

						in

								fold@	(tl_);	tl_

						end	else	let

								val	tr_	=	insertRT	(tr,	x0,	cmp)

								val+@bstree_vt_cons	(trl,	_,	trr)	=	tr_

								val	()	=	tr	:=	trl

								prval	()	=	fold@	(t)

								val	()	=	trl	:=	t

						in

								fold@	(tr_);	tr_

						end

				end	//	end	of	[bstree_vt_cons]

		|	~bstree_vt_nil	()	=>

						bstree_vt_cons	(bstree_vt_nil,	x0,	bstree_vt_nil)

				//	end	of	[bstree_vt_nil]

//	end	of	[insertRT]

The	code	immediately	following	the	first	recursive	call	to	 insertRT 	performs	a	right	tree	rotation.	Let
us	use	T(tl,	x,	tr)	for	a	tree	such	that	its	root	node	contains	the	element	x	and	its	left	and	right	children
are	tl	and	tr,	respectively.	Then	a	right	rotation	turns	T(T(tll,	xl,	tlr),	x,	tr)	into	T(tll,	xl,	T(tlr,	x,	tr)).
The	code	immediately	following	the	second	recursive	call	to	 insertRT 	performs	a	left	tree	rotation,
which	turns	T(tl,	x,	T(trl,	xr,	trr))	into	T(T(tl,	x,	tlr),	xr,	trr).

To	further	illustrate	tree	rotations,	I	present	as	follows	two	function	templates	 lrotate 	and	 rrotate ,
which	implement	the	left	and	right	tree	rotations,	respectively:

fn{

a:t@ype

}	lrotate

		{l,l_tl,l_x,l_tr:addr}	

		{nl,nr:int	|	nl	>=	0;	nr	>	0}

(

		pf_tl:	bstree_vt	(a,	nl)	@	l_tl

,	pf_x:	a	@	l_x

,	pf_tr:	bstree_vt	(a,	nr)	@	l_tr

|	t:	bstree_vt_cons_unfold	(l,	l_tl,	l_x,	l_tr)

,	p_tl:	ptr	l_tl

,	p_tr:	ptr	l_tr

)	:	bstree_vt	(a,	1+nl+nr)	=	let

		val	tr	=	!p_tr

		val+@bstree_vt_cons	(trl,	_,	trr)	=	tr

		val	()	=	!p_tr	:=	trl

		prval	()	=	fold@	(t);	val	()	=	trl	:=	t

in

		fold@	(tr);	tr

end	//	end	of	[lrotate]

fn{

a:t@ype

}	rrotate

		{l,l_tl,l_x,l_tr:addr}

		{nl,nr:int	|	nl	>	0;	nr	>=	0}

(

		pf_tl:	bstree_vt	(a,	nl)	@	l_tl

,	pf_x:	a	@	l_x

,	pf_tr:	bstree_vt	(a,	nr)	@	l_tr

|	t:	bstree_vt_cons_unfold	(l,	l_tl,	l_x,	l_tr)

,	p_tl:	ptr	l_tl

,	p_tr:	ptr	l_tr

)	:	bstree_vt	(a,	1+nl+nr)	=	let

		val	tl	=	!p_tl

		val+@bstree_vt_cons	(tll,	x,	tlr)	=	tl

		val	()	=	!p_tl	:=	tlr

		prval	()	=	fold@	(t);	val	()	=	tlr	:=	t

in

		fold@	(tl);	tl

end	//	end	of	[rrotate]

Given	4	addresses	L0,	L1,	L2	and	L3,	the	type	 bstree_vt_cons_unfold(L0,	L1,	L2,	l3) 	is	for	a	tree	node
created	 by	 a	 call	 to	 bstree_vt_cons 	 such	 that	 the	 node	 is	 located	 at	 L0	 and	 the	 three	 arguments	 of
bstree_vt_cons 	are	 located	at	L1,	L2	and	L3,	and	 the	proofs	for	 the	at-views	associated	with	L1,	L2
and	L3	are	put	in	the	store	for	currently	available	proofs.

The	 function	 template	 insertRT 	 for	 root-insertion	 can	 now	 be	 implemented	 as	 follows	 by	making
direct	use	of	 lrotate 	and	 rrotate :

fun{

a:t@ype

}	insertRT	{n:nat}	.<n>.

(

		t:	bstree_vt	(a,	n),	x0:	&a,	cmp:	cmp(a)

)	:	bstree_vt	(a,	n+1)	=

		case+	t	of

		|	@bstree_vt_cons

						(tl,	x,	tr)	=>	let

						prval	pf_x	=	view@x

						prval	pf_tl	=	view@tl

						prval	pf_tr	=	view@tr

						val	sgn	=	compare<a>	(x0,	x,	cmp)

				in

						if	sgn	<=	0	then	let

								val	()	=	tl	:=	insertRT<a>	(tl,	x0,	cmp)

						in

								rrotate<a>	(pf_tl,	pf_x,	pf_tr	|	t,	addr@tl,	addr@tr)

						end	else	let

								val	()	=	tr	:=	insertRT<a>	(tr,	x0,	cmp)

						in

								lrotate<a>	(pf_tl,	pf_x,	pf_tr	|	t,	addr@tl,	addr@tr)

						end	(*	end	of	[if]	*)

				end	//	end	of	[bstree_vt_cons]

		|	~bstree_vt_nil	()	=>

						bstree_vt_cons	(bstree_vt_nil,	x0,	bstree_vt_nil)

				//	end	of	[bstree_vt_nil]

//	end	of	[insertRT]

I	would	like	to	point	out	that	neither	 insert 	nor	 insertRT 	is	tail-recursive.	While	it	is	straightforward
to	give	the	former	a	tail-recursive	implementation,	there	is	no	direct	way	to	do	the	same	to	the	latter.
In	order	to	implement	root-insertion	in	a	tail-recursive	manner,	we	are	in	need	of	binary	search	trees
with	parental	pointers	(so	as	to	allow	each	node	to	gain	direct	access	to	its	parent),	which	can	be	done
with	dataviews	but	not	with	dataviewtypes.

Please	find	the	entire	code	in	this	section	plus	some	additional	code	for	testing	on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_DATAVTYPE/bstree_vt.dats

Transition	from	Datatypes	to	Dataviewtypes

Many	programmers	are	likely	to	find	it	a	rather	involved	task	to	write	code	manipulating	values	of
dataviewtypes.	When	handling	a	complex	data	structure,	 I	myself	often	 try	 to	 first	use	a	datatype	 to
model	the	data	structure	and	implement	some	functionalities	of	the	data	structure	based	the	datatype.	I
then	 change	 the	 datatype	 into	 a	 corresponding	 dataviewtype	 and	 modify	 the	 implementation
accordingly	 to	make	 it	work	with	 the	dataviewtype.	 I	now	present	 as	 follows	an	 implementation	of
linear	 red-black	 trees	 that	 is	 directly	 based	 on	 a	 previous	 implementation	 of	 functional	 red-black
trees,	 illustrating	 concretely	 a	 kind	 of	 gradual	 transition	 from	 datatypes	 to	 dataviewtypes	 that	 can
greatly	 reduce	 the	 level	 of	 difficulty	 one	may	 otherwise	 encounter	 in	 an	 attempt	 to	 program	with
dataviewtypes	directly.

The	following	declaration	of	dataviewtype	 rbtree 	is	identical	to	the	previous	declaration	of	datatype
rbtree 	except	the	keyword	 datavtype 	being	now	used	instead	of	the	keyword	 datatype :

#define	BLK	0;	#define	RED	1

sortdef	clr	=	{c:int	|	0	<=	c;	c	<=	1}

datavtype	rbtree

(

		a:	t@ype+,	int(*c*),	int(*bh*),	int(*v*)

)	=	//	element	type,	color,	black	height,	violations

		|	rbtree_nil	(a,	BLK,	0,	0)	of	((*void*))

		|	{c,cl,cr:clr}{bh:nat}{v:int}

				{c==BLK	&&	v==0	||	c	==	RED	&&	v==cl+cr}

				rbtree_cons	(a,	c,	bh+1-c,	v)	of	(int	c,	rbtree0	(a,	cl,	bh),	a,	rbtree0	(a,	cr,	bh))

//	end	of	[rbtree]

where	rbtree0	(a:t@ype,	c:int,	bh:int)	=	rbtree	(a,	c,	bh,	0)

At	the	first	sight,	the	following	function	template	 insfix_l 	 is	greatly	more	 involved	that	a	previous
version	of	the	same	name	(for	manipulating	functional	red-black	trees):

fn{

a:t@ype

}	insfix_l	//	right	rotation

		{cl,cr:clr}

		{bh:nat}{v:nat}

		{l,l_c,l_tl,l_x,l_tr:addr}

(

		pf_c:	int(BLK)	@	l_c

,	pf_tl:	rbtree	(a,	cl,	bh,	v)	@	l_tl

,	pf_x:	a	@	l_x

,	pf_tr:	rbtree	(a,	cr,	bh,	0)	@	l_tr

|	t:	rbtree_cons_unfold	(l,	l_c,	l_tl,	l_x,	l_tr)

,	p_tl:	ptr	(l_tl)

)	:	[c:clr]	rbtree0	(a,	c,	bh+1)	=	let

		#define	B	BLK

		#define	R	RED

		#define	nil	rbtree_nil

		#define	cons	rbtree_cons

in

		case+	!p_tl	of

		|	@cons	(cl	as	R,	tll	as	@cons	(cll	as	R,	_,	_,	_),	_,	tlr)	=>	let

//

						val	()	=	cll	:=	B

						prval	()	=	fold@	(tll)

//

						val	tl	=	!p_tl

						val	()	=	!p_tl	:=	tlr

						prval	()	=	fold@	(t)

						val	()	=	tlr	:=	t

//

				in

						fold@	(tl);	tl

				end	//	end	of	[cons	(R,	cons	(R,	...),	...)]

		|	@cons	(cl	as	R,	tll,	_,	tlr	as	@cons	(clr	as	R,	tlrl,	_,	tlrr))	=>	let

//

						val	tl	=	!p_tl

						val	()	=	!p_tl	:=	tlrr

						prval	()	=	fold@	(t)

						val	()	=	tlrr	:=	t

//

						val	tlr_	=	tlr

						val	()	=	tlr	:=	tlrl

						val	()	=	cl	:=	B

						prval	()	=	fold@	(tl)

						val	()	=	tlrl	:=	tl

//

				in

						fold@	(tlr_);	tlr_

				end	//	end	of	[cons	(R,	...,	cons	(R,	...))]

		|	_	(*rest-of-cases*)	=>>	(fold@	(t);	t)

end	//	end	of	[insfix_l]

However,	I	would	like	to	point	out	that	the	interface	for	the	above	 insfix_l 	is	a	direct	translation	of
the	interface	for	the	previous	 insfix_l .	In	other	words,	the	previously	captured	relation	between	a	tree
being	rotated	and	the	one	obtained	from	applying	 insfix_l 	to	it	also	holds	in	the	setting	of	linear	red-

black	 trees.	The	very	 same	 statement	 can	be	made	 about	 the	 following	 function	 template	 insfix_r ,
which	is	precisely	a	mirror	image	of	 insfix_l :

fn{

a:t@ype

}	insfix_r	//	left	rotation

		{cl,cr:clr}

		{bh:nat}{v:nat}

		{l,l_c,l_tl,l_x,l_tr:addr}	(

		pf_c:	int(BLK)	@	l_c

,	pf_tl:	rbtree	(a,	cl,	bh,	0)	@	l_tl

,	pf_x:	a	@	l_x

,	pf_tr:	rbtree	(a,	cr,	bh,	v)	@	l_tr

|	t:	rbtree_cons_unfold	(l,	l_c,	l_tl,	l_x,	l_tr)

,	p_tr:	ptr	(l_tr)

)	:	[c:clr]	rbtree0	(a,	c,	bh+1)	=	let

		#define	B	BLK

		#define	R	RED

		#define	nil	rbtree_nil

		#define	cons	rbtree_cons

in

		case+	!p_tr	of

		|	@cons	(cr	as	R,	trl,	_,	trr	as	@cons	(crr	as	R,	_,	_,	_))	=>	let

//

						val	()	=	crr	:=	B

						prval	()	=	fold@	(trr)

//

						val	tr	=	!p_tr

						val	()	=	!p_tr	:=	trl

						prval	()	=	fold@	(t)

						val	()	=	trl	:=	t

//

				in

						fold@	(tr);	tr

				end	//	end	of	[cons	(R,	...,	cons	(R,	...))]

		|	@cons	(cr	as	R,	trl	as	@cons	(crr	as	R,	trll,	_,	trlr),	_,	trr)	=>	let

//

						val	tr	=	!p_tr

						val	()	=	!p_tr	:=	trll

						prval	()	=	fold@	(t)

						val	()	=	trll	:=	t

//

						val	trl_	=	trl

						val	()	=	trl	:=	trlr

						val	()	=	cr	:=	B

						prval	()	=	fold@	(tr)

						val	()	=	trlr	:=	tr

//

				in

						fold@	(trl_);	trl_

				end	//	end	of	[cons	(R,	cons	(R,	...),	...)]

		|	_	(*rest-of-cases*)	=>>	(fold@	(t);	t)

end	//	end	of	[insfix_r]

As	can	be	expected,	the	following	function	template	 rbtree_insert 	is	essentially	a	direct	translation	of
the	one	of	the	same	name	for	inserting	an	element	into	a	functional	red-black	tree:

extern

fun{a:t@ype}

rbtree_insert

		{c:clr}{bh:nat}

(

		t:	rbtree0	(a,	c,	bh),	x0:	&a,	cmp:	cmp	a

)	:	[bh1:nat]	rbtree0	(a,	BLK,	bh1)

implement{a}

rbtree_insert

		(t,	x0,	cmp)	=	let

//

#define	B	BLK

#define	R	RED

#define	nil	rbtree_nil

#define	cons	rbtree_cons

//

fun	ins

		{c:clr}{bh:nat}	.<bh,c>.

(

		t:	rbtree0	(a,	c,	bh),	x0:	&a

)	:	[cl:clr;	v:nat	|	v	<=	c]	rbtree	(a,	cl,	bh,	v)	=

(

		case+	t	of

		|	@cons	(

						c,	tl,	x,	tr

)	=>	let

						prval	pf_c	=	view@c

						prval	pf_tl	=	view@tl

						prval	pf_x	=	view@x

						prval	pf_tr	=	view@tr

						val	sgn	=	compare<a>	(x0,	x,	cmp)

				in

						if	sgn	<	0	then	let

								val	[cl:int,v:int]	tl_	=	ins	(tl,	x0)

								val	()	=	tl	:=	tl_

						in

								if	(c	=	B)

								then	(

										insfix_l<a>

												(pf_c,	pf_tl,	pf_x,	pf_tr	|	t,	addr@tl)

										//	end	of	[insfix_l]

)	else	let

										val	()	=	c	:=	R	in	fold@{a}{..}{..}{cl}(t);	t

								end	//	end	of	[if]

						end	else	if	sgn	>	0	then	let

								val	[cr:int,v:int]	tr_	=	ins	(tr,	x0)

								val	()	=	tr	:=	tr_

						in

								if	(c	=	B)

								then	(

										insfix_r<a>

												(pf_c,	pf_tl,	pf_x,	pf_tr	|	t,	addr@tr)

										//	end	of	[insfix_r]

)	else	let

										val	()	=	c	:=	R	in	fold@{a}{..}{..}{cr}(t);	t

								end	//	end	of	[if]

						end	else	(fold@{a}{..}{..}{0}	(t);	t)

				end	//	end	of	[cons]

		|	~nil	()	=>	cons{a}{..}{..}{0}(R,	nil,	x0,	nil)

)	(*	end	of	[ins]	*)

//

val	t	=	ins	(t,	x0)

//

in

//

case+	t	of	@cons(c	as	R,	_,	_,	_)	=>	(c	:=	B;	fold@	(t);	t)	|	_	=>>	t

//

end	//	end	of	[rbtree_insert]

I	literally	implemented	the	above	 rbtree_insert 	by	making	a	copy	of	the	previous	implementation	of
rbtree_insert 	 for	 functional	 red-black	 trees	 and	 then	 properly	 modifying	 it	 to	 make	 it	 pass
typechecking.	Although	this	process	of	copying-and-modifying	is	difficult	to	be	described	formally,
it	is	fairly	straightforward	to	follow	in	practice	as	it	is	almost	entirely	guided	by	the	error	messages
received	during	typechecking.

Please	find	the	entire	code	in	this	section	plus	some	additional	code	for	testing	on-line.	A	challenging
as	well	as	rewarding	exercise	is	for	the	reader	to	implement	an	operation	that	deletes	an	element	from
a	given	linear	red-black	tree.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_DATAVTYPE/rbtree.dats

Chapter	16.	Abstract	Views	and	Viewtypes
I	have	so	far	given	a	presentation	of	views	that	solely	focuses	on	at-views	and	the	views	built	on	top
of	at-views.	This	is	largely	due	to	at-views	being	the	form	of	most	widely	used	views	in	practice	and
also	being	the	first	form	of	views	supported	in	ATS.	However,	other	forms	of	views	can	be	readily
introduced	 into	ATS	 abstractly.	Even	 in	 a	 case	where	 a	 view	 can	 be	 defined	 based	 on	 at-views	 (or
other	 forms	 of	 views),	 one	 may	 still	 want	 to	 introduce	 it	 as	 an	 abstract	 view	 (accompanied	 with
certain	proof	functions	for	performing	view-changes).	Often	what	the	programmer	really	needs	is	to
figure	out	conceptually	whether	abstractly	defined	views	and	proof	functions	for	manipulating	them
actually	make	 sense.	This	 is	 a	bit	 like	 arguing	whether	 a	 function	 is	 computable:	There	 is	 rarely	 a
need,	 if	 at	 all,	 to	 actually	 encode	 the	 function	 as	 a	Turing-machine	 to	 prove	 its	 being	 computable.
IMHO,	learning	proper	use	of	abstract	views	and	abstract	viewtypes	is	a	necessary	step	for	one	to	take
in	 order	 to	 employ	 linear	 types	 effectively	 in	 practice	 to	 deal	with	 resource-related	 programming
issues.

Simple	Linear	Objects

Objects	 in	 the	 physical	 world	 are	 conspicuously	 linear:	 They	 cannot	 be	 created	 from	 nothing	 or
simply	go	vanished	by	turning	into	nothing.	Thus,	 it	 is	only	natural	 to	assign	linear	 types	to	values
that	represent	physical	objects.	I	choose	the	name	simple	linear	object	here	to	refer	to	a	linear	value
representing	 an	 object	 of	 some	 sort	 that	 does	 not	 contain	 built-in	 mechanism	 for	 supporting
inheritance.

Let	us	now	take	a	look	at	a	concrete	example	of	simple	linear	object.	The	following	code	presents	an
interface	for	a	timer	(that	is,	stopwatch):

//

absvtype	timer_vtype

vtypedef	timer	=	timer_vtype

//

fun	timer_new	():	timer

fun	timer_free	(x:	timer):	void

fun	timer_start	(x:	!timer):	void

fun	timer_finish	(x:	!timer):	void

fun	timer_pause	(x:	!timer):	void

fun	timer_resume	(x:	!timer):	void

fun	timer_get_ntick	(x:	!timer):	uint

fun	timer_reset	(x:	!timer):	void

//

The	state	of	a	timer	is	given	the	record	type	 timer_struct 	defined	as	follows:

//

typedef

timer_struct	=	@{

		started=	bool	//	the	timer	has	started

,	running=	bool	//	the	timer	is	running

		//	the	tick	number	recorded	when	the	timer

,	ntick_beg=	uint	//	was	turned	on	last	time

,	ntick_acc=	uint	//	the	number	of	accumulated	ticks

}	(*	end	of	[timer_struct]	*)

//

The	 following	 linear	 datatype	 timer 	 is	 declared	 for	 timers,	 and	 the	 abstract	 type	 timer_vtype 	 is
assumed	to	equal	 timer :

//

datavtype	timer	=

		TIMER	of	(timer_struct)

//

assume	timer_vtype	=	timer

//

Various	 functions	on	 timers	can	now	be	 readily	 implemented.	Let	us	 first	 see	 the	code	 for	creating
and	freeing	timers:

implement

timer_new	()	=	let

//

val	timer	=	TIMER	(_)

val	TIMER	(x)	=	timer

//

val	()	=	x.started	:=	false

val	()	=	x.running	:=	false

val	()	=	x.ntick_beg	:=	0u

val	()	=	x.ntick_acc	:=	0u

//

prval	()	=	fold@	(timer)

//

in

		timer

end	//	end	of	[timer_new]

implement

timer_free	(timer)	=

		let	val	~TIMER	_	=	timer	in	(*nothing*)	end

//	end	of	[timer_free]

The	function	for	starting	a	timer	can	be	implemented	as	follows:

implement

timer_start

		(timer)	=	let

		val+@TIMER(x)	=	timer

		val	()	=	x.started	:=	true

		val	()	=	x.running	:=	true

		val	()	=	x.ntick_beg	:=	the_current_tick_get	()

		val	()	=	x.ntick_acc	:=	0u

		prval	()	=	fold@	(timer)

in

		//	nothing

end	//	end	of	[timer_start]

where	 the_current_tick_get 	 is	 a	 function	 for	 reading	 the	 current	 time	 (represented	 as	 a	 number	 of
ticks):

extern	fun	the_current_tick_get	():	uint

A	timer	can	be	stopped	or	paused.	The	function	for	stopping	a	timer	can	be	implemented	as	follows:

implement

timer_finish

		(timer)	=	let

		val+@TIMER(x)	=	timer

		val	()	=	x.started	:=	false

		val	()	=

		if	x.running	then

		{

				val	()	=	x.running	:=	false

				val	()	=	x.ntick_acc	:=

						x.ntick_acc	+	the_current_tick_get	()	-	x.ntick_beg

		}	(*	end	of	[val]	*)

		prval	()	=	fold@	(timer)

in

		//	nothing

end	//	end	of	[timer_finish]

A	timer	can	be	paused	and	then	resumed.	The	following	code	implements	the	functions	for	pausing
and	resuming	a	timer:

implement

timer_pause

		(timer)	=	let

		val+@TIMER(x)	=	timer

		val	()	=

		if	x.running	then

		{

				val	()	=	x.running	:=	false

				val	()	=	x.ntick_acc	:=

						x.ntick_acc	+	the_current_tick_get	()	-	x.ntick_beg

		}	(*	end	of	[val]	*)

		prval	()	=	fold@	(timer)

in

		//	nothing

end	//	end	of	[timer_pause]

implement

timer_resume

		(timer)	=	let

		val+@TIMER(x)	=	timer

		val	()	=

		if	x.started	&&	~(x.running)	then

		{

				val	()	=	x.running	:=	true

				val	()	=	x.ntick_beg	:=	the_current_tick_get	()

		}	(*	end	of	[if]	*)	//	end	of	[val]

		prval	()	=	fold@	(timer)

in

		//	nothing

end	//	end	of	[timer_resume]

As	can	be	expected,	the	amount	of	time	between	the	point	where	a	timer	is	paused	and	the	point	where
the	timer	is	resumed	is	not	counted.

It	is	also	possible	to	reset	a	timer	by	calling	the	function	 timer_reset :

implement

timer_reset

		(timer)	=	let

		val+@TIMER(x)	=	timer

		val	()	=	x.started	:=	false

		val	()	=	x.running	:=	false

		val	()	=	x.ntick_beg	:=	0u

		val	()	=	x.ntick_acc	:=	0u

		prval	()	=	fold@	(timer)

in

		//	nothing

end	//	end	of	[timer_reset]

In	order	to	read	the	time	accumulated	by	a	timer,	the	function	 timer_get_ntick 	can	be	called:

implement

timer_get_ntick

		(timer)	=	let

		val+@TIMER(x)	=	timer

		var	ntick:	uint	=	x.ntick_acc

		val	()	=

		if	x.running	then	(

				ntick	:=	ntick	+	the_current_tick_get	()	-	x.ntick_beg

)	(*	end	of	[if]	*)	//	end	of	[val]

		prval	()	=	fold@	(timer)

in

		ntick

end	//	end	of	[timer_get_ntick]

A	 straightforward	 approach	 to	 implementing	 the_current_tick_get 	 can	 be	 based	 directly	 on	 the
function	 clock_gettime :

local

staload	"libc/SATS/time.sats"

in	(*	in-of-local	*)

implement

the_current_tick_get	()	=	let

		var	tv:	timespec	//	uninitialized

		val	err	=	clock_gettime	(CLOCK_REALTIME,	tv)

		val	((*void*))	=	assertloc	(err	>=	0)

		prval	((*void*))	=	opt_unsome{timespec}(tv)

in

		$UNSAFE.cast2uint(tv.tv_sec)

end	//	end	of	[the_current_tick_get]

end	//	end	of	[local]

Note	that	the	library	flag	 -lrt 	may	be	needed	in	order	to	have	link-time	access	to	 clock_gettime 	as	the
function	is	in	 librt .

Please	find	on-line	the	entirety	of	the	code	presented	in	this	section	plus	some	testing	code.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_ABSVTYPE/timer.dats

Memory	Allocation	and	Deallocation

The	 issue	 of	 memory	 allocation	 and	 deallocation	 is	 of	 paramount	 importance	 in	 systems
programming,	 where	 garabage	 collection	 (GC)	 at	 run-time	 may	 not	 even	 be	 allowed.	 Handling
memory	 management	 safely	 and	 efficiently	 is	 a	 long	 standing	 problem	 of	 great	 challenge	 in
programming,	and	its	novel	solution	in	ATS	is	firmly	rooted	in	the	paradigm	of	programming	with
theorem-proving	(PwTP).

The	following	function	 malloc_gc 	is	available	in	ATS	for	memory	allocation:

fun	malloc_gc

		{n:nat}(n:	size_t	n)

		:	[l:agz]	(b0ytes	n	@	l,	mfree_gc_v	(l)	|	ptr	l)

//	end	of	[malloc_gc]

The	sort	 agz 	is	a	subset	sort	defined	for	addresses	that	are	not	null:

sortdef	agz	=	{a:addr	|	a	>	null}	//	[gz]	for	great-than-zero

Given	 an	 integer	N,	 the	 type	 b0ytes(N) 	 is	 a	 shorthand	 for	 @[byte?][N] ,	which	 is	 for	 an	 array	 of	N
uninitialized	bytes.	Therefore,	the	at-view	 b0ytes(N)@L 	is	the	same	as	the	array-view	 array_v(byte?,	L,
N) ,	where	L	is	a	memory	location.	The	view	constructor	 mfree_gc_v 	is	abstract.	For	a	given	location
L,	the	view	 mfree_gc_v(L) 	stands	for	a	form	of	capability	that	allows	allocated	memory	at	location	L
to	be	freed	(or	reclaimed)	by	the	following	function	 mfree_gc :

fun	mfree_gc

		{l:addr}{n:nat}

		(pfat:	b0ytes(n)	@	l,	pfgc:	mfree_gc_v	(l)	|	p:	ptr	l):	void

//	end	of	[free_gc]

Note	that	 mfree_gc_v(L) 	is	so	far	the	first	form	of	view	we	have	encountered	that	is	not	built	on	top	of
any	at-views.

In	practice,	it	is	rather	cumbersome	to	deal	with	bytes	directly.	The	function	 ptr_alloc 	is	available	for
allocating	memory	to	store	a	single	value	(of	certain	type)	and	the	function	 ptr_free 	for	deallocating
such	memory:

fun{a:vt0p}

ptr_alloc	()

		:<>	[l:agz]	(a?	@	l,	mfree_gc_v	(l)	|	ptr	l)

//	end	of	[ptr_alloc]

fun	ptr_free

		{a:t@ype}{l:addr}

		(pfgc:	mfree_gc_v	(l),	pfat:	a	@	l	|	p:	ptr	l):<>	void	=	"mac#%"

//	end	of	[ptr_free]

In	 addition,	 the	 function	 array_ptr_alloc 	 is	 for	 allocating	memory	 to	 store	 an	 array	 of	 values	 (of
certain	type),	and	the	function	 array_ptr_free 	is	for	deallocating	such	memory:

fun{a:vt0p}

array_ptr_alloc

		{n:int}

(

		asz:	size_t	n

)	:	[l:agz]

(

		array_v	(a?,	l,	n),	mfree_gc_v	(l)	|	ptr	l

)	//	end	of	[array_ptr_alloc]

fun{}

array_ptr_free

		{a:vt0p}{l:addr}{n:int}

(

		array_v	(a?,	l,	n),	mfree_gc_v	(l)	|	ptr	l

)	:	void	//	end	of	[array_ptr_free]

I	now	give	a	realistic	and	interesting	example	involving	both	array	allocation	and	deallocation.	The
following	two	functions	templates	 msort1 	and	 msort2 	perform	merge-sort	on	a	given	array:

typedef	cmp	(a:t@ype)	=	(&a,	&a)	->	int

extern

fun{

a:t@ype

}	msort1	{n:nat}

		(A:	&(@[a][n]),	n:	size_t	n,	B:	&(@[a?][n]),	cmp:	cmp(a)):	void

//	end	of	[msort1]

extern

fun{

a:t@ype

}	msort2	{n:nat}

		(A:	&(@[a][n]),	n:	size_t	n,	B:	&(@[a?][n])	>>	@[a][n],	cmp:	cmp(a)):	void

//	end	of	[msort2]

It	is	well-known	that	merging	two	sorted	segments	of	a	given	array	requires	additional	space.	When
msort1 	is	called	on	arrays	A	and	B,	the	array	A	is	the	one	to	be	sorted	and	the	array	B	is	some	kind	of
scratch	area	needed	to	perform	merging	(of	sorted	array	segments).	When	a	call	 to	 msort1 	 returns,
the	sorted	version	of	A	is	still	sotred	in	A.	What	 msort2 	does	is	similar	but	the	sorted	version	of	A	is
stored	in	B	when	a	call	to	 msort2 	returns.	As	a	good	exercise,	I	suggest	that	the	interested	reader	take
the	effort	to	give	a	mutually	recursive	implementation	of	 msort1 	and	 msort2 .	An	 implementation	of
merge-sort	based	on	 msort1 	can	be	readily	given	as	follows:

extern

fun{

a:t@ype

}	mergeSort{n:nat}

		(A:	&(@[a][n]),	n:	size_t	n,	cmp:	cmp(a)):	void

//	end	of	[mergeSort]

implement

{a}(*tmp*)

mergeSort

		(A,	n,	cmp)	=	let

		val	(pfat,	pfgc	|	p)	=	array_ptr_alloc<a>	(n)

		val	((*void*))	=	msort1	(A,	n,	!p,	cmp)

		val	((*void*))	=	array_ptr_free	(pfat,	pfgc	|	p)

in

		//	nothing

end	//	end	of	[mergeSort]

Clearly,	 an	 array	 is	 first	 allocated	 (to	be	used	 as	 a	 scratch	 area)	 and	 then	deallocated	 after	 it	 is	 no
longer	needed.

It	 is	 also	 allowed	 for	 a	 function	 to	 allocate	memory	 on	 its	 call-stack	 by	 calling	 a	 special	 function
alloca ,	which	is	given	the	following	type	in	ATS:

(*

staload	"libc/SATS/alloa.sats"

*)

fun	alloca

		{dummy:addr}{n:int}	(

		pf:	void@dummy	|	n:	size_t	(n)

)	:	[l:addr]	(bytes(n)	@	l,	bytes(n)	@	l	->	void@dummy	|	ptr(l))

The	type	assigned	to	 alloca 	makes	it	extremely	unlikely	for	someone	to	unintentionally	write	well-
typed	code	in	ATS	that	may	erroneourly	attempt	to	access	memory	obtained	from	calling	 alloca 	after

the	calling	function	has	returned.

The	following	function	 array_ptr_alloca_tsz 	is	the	same	as	 alloca 	dynamically	but	it	is	given	a	type
that	is	often	more	convenient	to	use:

fun

array_ptr_alloca_tsz

		{a:vt0p}{dummy:addr}{n:int}

(

		pf:	void@dummy	|	asz:	size_t(n),	tsz:	sizeof_t(a)

)	:	[l:addr]	(array(a?,n)@l,	array(a?,n)@l	->	void@dummy	|	ptr(l))

As	 an	 example,	 the	 function	 template	 mergeSort 	 implemented	 above	 can	 also	 be	 implemented	 as
follows:

implement

{a}(*tmp*)

mergeSort

		(A,	n,	cmp)	=	let

		val	tsz	=	sizeof<a>

		var	dummy:	void	=	()

		prval	pf	=	view@dummy

		val	(

				pfat,	fpfat	|	p

)	=	array_ptr_alloca_tsz{a}(pf	|	n,	tsz)

		val	((*void*))	=	msort1<a>	(A,	n,	!p,	cmp)

		prval	((*void*))	=	view@dummy	:=	fpfat	(pfat)

in

		//	nothing

end	//	end	of	[mergeSort]

where	the	array	used	as	a	scratch	area	during	merge-sort	is	allocated	on	the	call-stack	of	 mergeSort .
While	this	implementation	of	 mergeSort 	may	seem	interesting,	 it	 is	actually	 inferior	 to	 the	previous
implementation	as	calling	 alloca 	to	allocate	a	large	chunk	of	memory	can	readily	lead	to	a	crash	for
which	 the	 cause	 is	 often	 very	 difficult	 to	 determine.	 In	 general,	 choosing	 alloca 	 over	 malloc 	 is
difficult	to	justify,	and	any	call	to	the	former	should	be	scrutinized.

The	entire	implementation	of	merge-sort	on	arrays	plus	some	testing	code	is	available	on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_ABSVTYPE/mergeSort.dats

Example:	Array-Based	Circular	Buffers

Array-based	circular	buffers	are	of	common	use	 in	practice.	For	 instance,	 in	a	 typical	client/server
model,	 a	 circular	 buffer	 can	 be	 employed	 to	 hold	 requests	 issued	 by	multiple	 clients	 that	 are	 then
processed	by	the	server	according	to	the	first-in-first-out	(FIFO)	policy.	In	a	case	where	each	request
needs	 to	 be	 given	 a	 priority	 (chosen	 from	 a	 fixed	 set),	 a	 circular	 buffer	 can	 be	 created	 for	 each
priority	to	hold	requests	of	that	particular	priority.

Let	 us	 declare	 a	 linear	 abstract	 type	 (that	 is,	 abstract	 viewtype)	 as	 follows	 for	 values	 representing
circular	buffers:

absvtype

cbufObj	(a:vt@ype+,	m:int,	n:	int)	=	ptr

Such	values	are	considered	simple	linear	objects	(as	inheritance	is	not	an	issue	to	be	dealt	with	in	this
setting).	Given	a	viewtype	VT	and	two	integers	M	and	N,	the	viewtype	 cbufObj(VT,	M,	N) 	is	for	a	given
buffer	of	maximal	capacity	M	that	currently	holds	N	elements	of	the	type	VT.

Some	properties	on	 the	parameters	of	 cbufObj 	 can	be	captured	by	 introducing	 the	 following	proof
function:

//

prfun

lemma_cbufObj_param

		{a:vt0p}{m,n:int}

		(buf:	!cbufObj(a,	m,	n)):	[m>=n;	n>=0]	void

//

The	interface	for	the	following	two	function	templates	indicates	that	they	can	be	called	to	compute	the
capacity	and	current	size	of	a	buffer:

//

fun{a:vt0p}

cbufObj_get_cap

		{m,n:int}	(buf:	!cbufObj(a,	m,	n)):	size_t(m)

//

fun{a:vt0p}

cbufObj_get_size

		{m,n:int}(buf:	!cbufObj(a,	m,	n)):	size_t(n)

//

While	 it	 is	 straightforward	 to	 use	 cbufObj_get_cap 	 and	 cbufObj_get_size 	 to	 tell	 whether	 a	 buffer	 is

currently	empty	or	full,	a	direct	approach	is	likely	to	be	more	efficient.	The	following	two	function
templates	check	for	the	emptiness	and	fullness	of	a	given	circular	buffer:

//

fun{a:vt0p}

cbufObj_is_empty

		{m,n:int}(buf:	!cbufObj(a,	m,	n)):	bool(n==0)

//

fun{a:vt0p}

cbufObj_is_full

		{m,n:int}(buf:	!cbufObj(a,	m,	n)):	bool(m==n)

//

The	functions	for	creating	and	destroying	circular	buffers	are	named	 cbufObj_new 	and	 cbufObj_free ,
respectively:

//

fun{a:vt0p}

cbufObj_new

		{m:pos}(m:	size_t(m)):	cbufObj(a,	m,	0)

//

fun	cbufObj_free

		{a:vt0p}{m:int}(buf:	cbufObj(a,	m,	0)):	void

//

Note	that	a	buffer	can	be	freed	only	if	it	contains	no	elements	as	an	element	(of	some	viewtype)	may
contain	resources.	If	elements	in	a	buffer	are	of	some	(non-linear)	type,	then	the	following	function
can	be	called	to	clear	out	all	the	elements	stored	in	the	buffer:

fun

cbufObj_clear

		{a:t@ype}{m,n:int}

		(buf:	!cbufObj(a,	m,	n)	>>	cbufObj(a,	m,	0)):	void

//	end	of	[cbufObj_clear]

The	next	 two	 functions	 are	 for	 inserting/removing	 an	 element	 into/from	a	given	buffer,	which	 are
probably	the	most	frequently	used	operations	on	buffers:

//

fun{a:vt0p}

cbufObj_insert

		{m,n:int	|	n	<	m}

(

		buf:	!cbufObj(a,	m,	n)	>>	cbufObj(a,	m,	n+1),	x:	a

)	:	void	//	end	of	[cbufObj_insert]

//

fun{a:vt0p}

cbufObj_remove

		{m,n:int	|	n	>	0}

		(buf:	!cbufObj(a,	m,	n)	>>	cbufObj(a,	m,	n-1)):	(a)

//

Please	find	on-line	the	file	circbuf.sats	containing	the	entirety	of	the	interface	for	functions	creating,
destroying	and	manipulating	circular	buffers.

There	are	many	simple	and	practical	ways	to	 implement	 the	abstract	 type	 cbufObj 	and	 the	functions
declared	in	circbuf.sats.	In	the	file	circbuf.dats,	I	give	an	implementation	that	employs	four	pointers
p_beg,	p_end,	p_frst	and	p_last	 to	represent	a	circular	buffer:	p_beg	and	p_end	are	 the	starting	and
finishing	 addresses	 of	 the	 underline	 array,	 respectively,	 and	 p_frst	 and	 p_last	 are	 the	 starting
addresses	of	the	occupied	and	unoccupied	segments	(in	the	array),	respectively.	What	is	special	about
this	 implementation	is	 its	employing	a	style	of	programming	that	deliberately	eschews	the	need	for
proof	 construction.	While	 code	written	 in	 this	 style	 is	 not	 guaranteed	 to	 be	 type-safe,	 the	 style	 can
nonetheless	be	of	great	practical	value	in	a	setting	where	constructing	formal	proofs	is	deemed	too
costly	a	requirement	to	be	fully	fulfilled.	Anyone	who	tries	to	give	a	type-safe	implementation	for	the
functions	declared	in	circbuf.sats	should	likely	find	some	genuine	appreciation	for	this	point.

In	the	file	circbuf2.dats,	I	give	another	implementation	in	which	a	circular	buffer	is	represented	as	a
pointer	p_beg	plus	 three	 integers	m,	n	 and	 f:	 p_beg	points	 to	 the	 starting	 location	of	 the	underline
array,	m	 is	 the	 size	 of	 the	 array	 (that	 is,	 the	 capacity	 of	 the	 buffer),	 n	 is	 the	 number	 of	 elements
currently	 stored	 in	 the	buffer	 and	 f	 is	 the	 total	 number	of	 elements	 that	 have	 so	 far	 been	 removed
from	the	buffer.	Again,	proof	construction	is	delibrately	eschewed	in	this	implementation.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_ABSVTYPE/circbuf.sats
https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_ABSVTYPE/circbuf.sats
https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_ABSVTYPE/circbuf.dats
https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_ABSVTYPE/circbuf.sats
https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_ABSVTYPE/circbuf2.dats

Locking	and	Unlocking

In	 concurrent	 programming,	 the	 issue	 of	 safely	 locking	 and	 unlocking	 shared	 resources	 is	 both
essential	and	challenging.	I	am	to	demonstrate	in	this	section	concretely	and	convincingly	that	linear
types	can	be	used	with	great	effectiveness	to	address	this	issue.

Let	us	first	introduce	a	linear	abstract	type	 shared 	as	follows:

absvtype	shared(a:vtype)	=	ptr

Given	 a	 viewtype	VT	 (for	 some	 resources),	 a	 value	 of	 the	 type	 shared(VT) 	 is	 essentially	 a	 boxed
record	containing	a	 resource	of	 the	 type	VT	plus	a	 lock	 (or	 several)	of	 some	kind.	The	 following
function	 shared_make 	is	called	to	turn	a	resource	into	a	shared	resource:

fun	shared_make{a:vtype}(x:	a):	shared(a)		

Notice	that	the	type	 shared(VT) 	itself	is	linear.	In	terms	of	implementation,	there	is	usually	a	reference
count	 inside	a	 linear	shared	resource	 that	 is	protected	by	a	spin-lock.	The	functions	 shared_ref 	and
shared_unref 	are	for	increasing	and	descreasing	the	reference	count	inside	a	shared	resource:

fun	shared_ref{a:vtype}(!shared(a)):	shared(a)

fun	shared_unref{a:vtype}(shared(a)):	Option_vt(a)

If	the	reference	count	of	a	shared	resource	is	1,	then	calling	 shared_unref 	on	the	shared	resource	frees
the	memory	used	in	its	representation	and	then	returns	the	resource	stored	inside	it.

The	 function	 shared_lock 	 acquires	 the	 resource	 from	 a	 given	 shared	 resource	 and	 the	 function
shared_unlock 	does	the	opposite:

//

absview	locked_v

//

fun	shared_lock{a:vtype}(!shared(a)):	(locked_v	|	a)

fun	shared_unlock{a:vtype}(locked_v	|	!shared(a),	x:	a):	void

//

Note	 that	 the	 abstract	 view	 locked_v 	 is	 introduced	 for	 linear	 proofs	 that	 are	 meant	 to	 remind	 the
programmer	that	a	shared	resoure	needs	to	be	released	after	it	is	acquired.

As	can	be	expected,	a	shared	resource	can	be	implemented	as	a	boxed	tuple	consisting	of	a	spin-lock,

a	reference	count	and	a	pointer	(referring	to	the	stored	resource):

//

datavtype

shared_	(a:vtype)	=

		SHARED	of	(spin1_vt(*lock*),	int(*count*),	ptr)

//

assume	shared	=	shared_

//

Note	 that	 the	 type	 spin1_vt 	 is	 for	 linear	 spin-locks.	 The	 function	 shared_ref 	 is	 implemented	 as
follows:

implement

shared_ref

		{a}(sh)	=	let

//

val+@SHARED

		(spin,	count,	_)	=	sh

//

val

spin	=	//	for	temp.	use

		unsafe_spin_vt2t(spin)

//

val

(pf	|	())	=	spin_lock(spin)

val	c0	=	count

val	()	=	count	:=	c0	+	1

val	((*void*))	=	spin_unlock(pf	|	spin)

prval	((*void*))	=	fold@sh

//

in

		$UN.castvwtp1{shared(a)}(sh)

end	//	end	of	[shared_ref]

Clearly,	the	implementation	makes	use	of	several	unsafe	casts.	An	implementation	without	such	casts
would	be	highly	involved	even	if	it	could	be	done.	The	spin-lock	must	be	acquired	before	the	binding
between	 c0 	and	the	integer	stored	in	 count 	is	formed	for	otherwise	a	race	condition	can	appear.	The
function	 shared_unref 	is	implemented	as	follows:

implement

shared_unref

		{a}(sh)	=	let

//

val+@SHARED

		(spin,	count,	_)	=	sh

//

val

spin	=	//	for	temp.	use

		unsafe_spin_vt2t(spin)

//

val

(pf	|	())	=	spin_lock(spin)

val	c0	=	count

val	()	=	count	:=	c0	-	1

val	((*void*))	=	spin_unlock(pf	|	spin)

prval	((*void*))	=	fold@sh

//

in

//

if

c0	<=	1

then	let

		val+~SHARED(spin,	_,	x)	=	sh

		val	((*freed*))	=	spin_vt_destroy(spin)

in

		Some_vt($UN.castvwtp0{a}(x))

end	//	end	of	[then]

else	let

		prval	()	=	$UN.cast2void(sh)	in	None_vt()

end	//	end	of	[else]

//

end	//	end	of	[shared_unref]

In	 the	 case	where	 the	 reference	 count	 is	 1,	 then	 the	 shared	 resource	 is	 freed,	 the	 spin-lock	 in	 it	 is
destroyed,	and	the	resource	in	it	is	returned.

The	functions	 shared_lock 	and	 shared_unlock 	are	implemented	as	follows:

implement

shared_lock

		{a}(sh)	=	let

//

val+@SHARED(spin,	_,	x)	=	sh

//

val

spin	=

		unsafe_spin_vt2t(spin)

//

val

(pf	|	())	=	spin_lock(spin)

//

val	x0	=	$UN.castvwtp0{a}(x)

//

prval	()	=	fold@sh

//

in

		($UN.castview0(pf)	|	x0)

end	//	end	of	[shared_lock]

implement

shared_unlock

		{a}(pf	|	sh,	x0)	=	let

//

val+@SHARED(spin,	_,	x)	=	sh

//

val

spin	=

		unsafe_spin_vt2t(spin)

//

val	()	=	x	:=	$UN.castvwtp0{ptr}(x0)

//

val	()	=

		spin_unlock($UN.castview0(pf)	|	spin)

//

prval	()	=	fold@sh

//

in

		//	nothing

end	//	end	of	[shared_unlock]

In	the	case	of	 shared_lock ,	please	notice	that	the	content	stored	in	the	variable	 x 	is	read	out	after	the
spin-lock	is	acquired.	This	is	crucial	for	otherwise	a	race	condition	can	readily	appear.	In	the	case	of
shared_unlock ,	the	content	of	the	variable	 x 	is	updated	before	the	acquired	spin-lock	is	released.

Please	find	on-line	the	file	shared_vt.dats	containing	the	entirety	of	the	code	presented	in	this	section.
In	addition,	the	file	also	contains	an	implementation	of	three	threads	that	move	in	locked	steps:	thread
0	moves;	thread	1	moves;	thread	2	moves;	thread	0	moves;	thread	1	moves;	thread	2	moves;	etc.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_ABSVTYPE/shared_vt.dats

Linear	Channels	for	Asynchronous	IPC

In	 this	 section,	 I	 will	 present	 an	 implementation	 of	 linear	 channels	 to	 support	 asynchronous
communication	between	threads.	This	is	also	a	very	fitting	occasion	for	me	to	advocate	what	I	often
refer	to	as	programmer-centric	program	verification.

A	communication	channel	between	threads	is	essentially	a	queue	wrapped	in	some	kind	of	protection
mechanism	needed	for	guarding	against	race	conditions.	Assume	that	a	queue	is	of	a	fixed	capacity,
that	is,	the	capacity	of	the	queue	is	fixed	after	its	creation.	If	the	queue	is	full,	then	inserting	an	element
into	it	results	in	a	failure.	If	the	queue	is	empty,	then	removing	an	element	from	it	results	in	a	failure.
In	 order	 to	 prevent	 inserting	 into	 a	 full	 queue	 or	 removing	 from	 an	 empty	 queue,	 I	 could	 first
introduce	a	linear	abstract	type	for	queues	as	follows:

absvtype

queue_vtype(a:vt@ype+,	int(*m*),	int(*n*))

vtypedef	queue(a:vt@ype,m:int,n:int)	=	queue_vtype(a,m,n)

where	the	type	 queue(VT,M,N) 	is	for	a	queue	of	capacity	M	that	currently	contains	N	elements	of	type
VT.	Then	 the	 functions	 for	 inserting	 into	and	 removing	 from	a	queue	are	expected	 to	be	given	 the
following	interface:

//

fun{a:vt0p}

queue_insert

		{m,n:nat	|	m	>	n}

		(!queue(a,	m,	n)	>>	queue(a,	m,	n+1),	a):	void

//

fun{a:vt0p}

queue_remove

		{m,n:nat	|	n	>	0}(!queue(a,	m,	n)	>>	queue(a,	m,	n-1)):	(a)

//

The	 presented	 abstract	 type	 queue 	 can	 indeed	work	 very	well	 for	 the	 task	 of	 implementing	 linear
channels.	However,	I	will	not	continue	with	this	version	of	 queue 	further	for	I	intend	to	present	a	style
of	program	verification	that	is	less	rigorous	but	far	more	flexible.

Following	is	another	version	of	abstract	type	 queue :

//

absvtype

queue_vtype(a:vt@ype+,	int(*id*))	=	ptr

//

vtypedef

queue(a:vt0p,	id:int)	=	queue_vtype(a,	id)

vtypedef	queue(a:vt0p)	=	[id:int]	queue(a,	id)

//

Given	a	viewtype	VT	and	an	integer	ID,	 queue(VT,ID) 	is	for	a	queue	containing	elements	of	the	type
VT	that	can	be	uniquely	identified	with	the	integer	ID.	So	one	may	think	of	ID	as	some	form	of	stamp.
The	following	declared	function	 queue_isnil 	is	for	testing	whether	a	given	queue	is	empty:

//

absprop	ISNIL(id:int,	b:bool)

//

fun

{a:vt0p}

queue_isnil{id:int}(!queue(a,	id)):	[b:bool]	(ISNIL(id,	b)	|	bool(b))

//

Given	 an	 integer	 ID,	 a	 proof	 of	 the	 prop	 ISNIL(ID,true) 	 (ISNIL(ID,false))	 means	 that	 the	 queue
uniquely	identified	by	ID	is	(not)	empty.	Similarly,	the	following	declared	function	 queue_isful 	is	for
testing	whether	a	given	queue	is	full:

//

absprop	ISFUL(id:int,	b:bool)

//

fun

{a:vt0p}

queue_isful{id:int}(!queue(a,	id)):	[b:bool]	(ISFUL(id,	b)	|	bool(b))

//

Given	 an	 integer	 ID,	 a	 proof	 of	 the	 prop	 ISFUL(ID,true) 	 (ISFUL(ID,false))	 means	 that	 the	 queue
uniquely	identified	by	ID	is	(not)	full.

The	functions	 queue_insert 	and	 queue_remove 	for	inserting	into	and	removing	from	a	given	queue	can
now	be	given	the	following	interface:

//

extern

fun

{a:vt0p}

queue_insert

		{id:int}

(

		ISFUL(id,	false)

|	xs:	!queue(a,	id)	>>	queue(a,	id2),	x:	a

)	:	#[id2:int]	void

//

extern

fun

{a:vt0p}

queue_remove

		{id:int}

(

		ISNIL(id,	false)	|	xs:	!queue(a,	id)	>>	queue(a,	id2)

)	:	#[id2:int]	a	//	end-of-fun

//

Note	that	either	inserting	an	element	into	a	queue	or	removing	an	element	from	a	queue	assigns	a	new
stamp	to	the	queue.	This	is	essential	for	interpreting	 ISNIL 	and	 ISFUL 	in	the	manner	presented	above.

In	order	to	call	 queue_insert 	on	a	given	queue,	one	needs	to	have	a	proof	attesting	to	the	queue	being
not	full.	Such	a	proof	is	obtained	if	calling	 queue_isful 	on	the	queue	returns	false.	Similarly,	in	order
to	call	 queue_remove 	on	a	given	queue,	one	can	first	call	 queue_isnil 	on	 the	queue	 to	obtain	a	proof
attesting	to	the	queue	being	not	empty.

What	 is	 really	 of	 concern	 here	 is	 not	 to	 actually	 verify	 that	 queue_isnil 	 and	 queue_isful 	 have	 the
interface	assigned	to	them.	Instead,	the	focus	is	on	ensuring	that	 queue_insert 	is	never	applied	to	a	full
queue	and	 queue_remove 	is	never	applied	to	an	empty	queue	under	the	assumption	that	 queue_isnil 	and
queue_isful 	 have	 the	 assigned	 interface.	 I	 refer	 to	 this	 form	 of	 program	 verification	 as	 being
programmer-centric	 because	 its	 correctness	 is	 not	 formally	 established	 in	 an	 objective	 manner.	 I
myself	find	that	programmer-centric	programm	verification	is	very	flexible	and	effective	in	practice.
If	we	believe	that	constructing	informal	mathematical	proofs	can	help	one	check	whether	the	proven
statements	are	valid,	then	it	is	only	natural	to	believe	that	programmer-centric	program	verification
can	also	help	one	check	whether	verified	programs	are	correct.

Let	 us	 now	 start	 to	 implement	 linear	 channels	 for	 asynchronous	 communication	 between	 threads.
First,	let	us	declare	a	linear	abstract	type	 channel 	as	follows:

absvtype	channel_vtype(a:vt@ype+)	=	ptr

vtypedef	channel(a:vt0p)	=	channel_vtype(a)

The	function	for	inserting	an	element	into	a	channel	is	given	the	following	interface:

fun{a:vt0p}	channel_insert	(!channel(a),	a):	void

The	caller	of	 channel_insert 	is	blocked	if	the	channel	is	full.	Similarly,	the	function	for	removing	an
element	from	a	channel	is	given	the	following	interface:

fun{a:vt0p}	channel_remove	(chan:	!channel(a)):	(a)

The	caller	of	 channel_remove 	is	blocked	if	the	channel	is	empty.

Let	a	channel	be	represented	as	follows:

//

datavtype

channel_	=

{

l0,l1,l2,l3:agz

}	CHANNEL	of

@{

		cap=intGt(0)

,	spin=spin_vt(l0)

,	rfcnt=intGt(0)

,	mutex=mutex_vt(l1)

,	CVisnil=condvar_vt(l2)

,	CVisful=condvar_vt(l3)

,	queue=ptr	//	deqarray

}	(*	end	of	[channel]	*)

//

assume	channel_vtype(a:vt0p)	=	channel_

//

There	are	7	fields	in	the	record	representing	a	channel;	the	 cap 	field	stores	an	integer	indicating	the
(fixed)	capacity	of	the	channel;	the	 spin 	field	stores	a	spin-lock	for	protecting	the	reference	count	in
the	field	of	the	name	 rfcnt ;	the	 mutex 	field	stores	a	mutex	for	protecting	the	queue	in	the	field	of	the
name	 queue ;	the	field	 CVisnil 	stores	a	conditional	variable	for	the	situation	where	a	caller	(holding
the	mutex)	wants	to	wait	for	the	condition	that	the	queue	becomes	not	empty;	the	field	 CVisful 	stores	a
conditional	 variable	 for	 the	 situation	 where	 a	 caller	 (holding	 the	 mutex)	 wants	 to	 wait	 for	 the
condition	that	the	queue	becomes	not	full.

The	function	 channel_insert 	is	given	the	following	implementation:

implement

{a}(*tmp*)

channel_insert

		(chan,	x0)	=	let

//

val+CHANNEL

		{l0,l1,l2,l3}(ch)	=	chan

val	mutex	=	unsafe_mutex_vt2t(ch.mutex)

val	(pfmut	|	())	=	mutex_lock	(mutex)

val	xs	=

		$UN.castvwtp0{queue(a)}((pfmut	|	ch.queue))

val	((*void*))	=	channel_insert2<a>	(chan,	xs,	x0)

prval	pfmut	=	$UN.castview0{locked_v(l1)}(xs)

val	((*void*))	=	mutex_unlock	(pfmut	|	mutex)

//

in

		//	nothing

end	//	end	of	[channel_insert]

where	the	auxiliary	function	 channel_insert2 	is	given	the	following	interface:

fun{a:vt0p}

channel_insert2

		(!channel(a),	!queue(a)	>>	_,	a):	void

Please	 note	 that	 channel_insert2 	 is	 called	 when	 the	 caller	 is	 holding	 the	mutex	 inside	 the	 channel.
Following	is	an	implementation	for	 channel_insert2 :

implement

{a}(*tmp*)

channel_insert2

		(chan,	xs,	x0)	=	let

//

val+CHANNEL

		{l0,l1,l2,l3}(ch)	=	chan

//

val	(pf	|	isful)	=	queue_isful	(xs)

//

in

//

if

isful

then	let

		prval

		(pfmut,	fpf)	=

		__assert	()	where

		{

				extern

				praxi	__assert	():	vtakeout0(locked_v(l1))

		}

		val	mutex	=	unsafe_mutex_vt2t(ch.mutex)

		val	CVisful	=	unsafe_condvar_vt2t(ch.CVisful)

		val	((*void*))	=	condvar_wait	(pfmut	|	CVisful,	mutex)

		prval	((*void*))	=	fpf	(pfmut)

in

		channel_insert2	(chan,	xs,	x0)

end	//	end	of	[then]

else	let

		val	isnil	=	queue_isnil	(xs)

		val	((*void*))	=	queue_insert	(pf	|	xs,	x0)

		val	((*void*))	=

		if	isnil.1

				then	condvar_broadcast(unsafe_condvar_vt2t(ch.CVisnil))

		//	end	of	[if]

in

		//	nothing

end	//	end	of	[else]

//

end	//	end	of	[channel_insert2]

The	logic	behind	 channel_insert2 	can	be	explained	as	follows.	If	the	queue	in	the	given	channel	is	full,
the	caller	calls	 condvar_wait 	 to	 release	 the	mutex	 it	 holds	 and	 then	wait	on	 the	 conditional	variable
stored	in	the	field	 CVisful 	of	the	channel;	after	the	caller	regains	the	mutex	after	being	awoken	by	a
signal	sent	 to	 the	conditioanl	variable,	 it	calls	 channel_insert2 	 recursively.	 If	 the	queue	 in	 the	given
channel	is	not	full,	then	the	caller	insert	a	given	element	into	the	queue	stored	in	the	field	 queue 	and
then	 returns.	Note	 that	 channel_insert2 	 is	 a	 tail-recursive	 function	 that	 essentially	 corresponds	 to	 a
standard	while-loop	often	appearing	in	C	code	for	handling	the	wait	on	a	conditional	variable.

By	following	the	above	implementation	for	 channel_insert 	(and	 channel_insert2),	it	should	be	pretty
straightforward	for	one	to	figure	out	an	implementation	for	 channel_remove .	I	leave	it	as	an	exercise.

Please	 find	 on-line	 the	 file	 channel_vt.dats	 containing	 the	 entirety	 of	 the	 code	 presented	 in	 this
section	plus	some	code	for	testing.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_ABSVTYPE/channel_vt.dats

V.	Programming	with	Function	Templates
Table	of	Contents
17.	From	Genericity	to	Late-Binding

Chapter	17.	From	Genericity	to	Late-Binding
The	support	for	function	templates	 in	ATS	is	deeply	 ingrained	in	 the	design	and	implementation	of
ATS.	Primarily,	function	templates	are	meant	to	provide	a	general	approach	to	code	reuse	in	ATS	that
is	highly	flexible	(in	terms	of	applicability)	while	incurring	minimal	run-time	overhead	if	any.	Both
ATSPRE	 (that	 is,	 ATSLIB/prelude)	 and	 ATSLIB/libats	 are	 nearly	 entirely	 template-based,	 and	 the
templates	 in	 these	 libraries	 are	 for	 use	 by	 atsopt	 to	 generate	 C	 code	 that	 implements	 template
instances	in	the	ATS	source	being	compiled.	The	library	files	of	ATS	for	linking	(libatslib.a	and

libatslib.so)	 are	 minimal,	 and	 they	 are	 not	 even	 necessary	 for	 compiling	 ATS	 source	 into

executable	binaries.

The	code	employed	for	illustration	in	this	chapter	plus	some	additional	code	for	testing	is	available
on-line.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_FNTMPINT/

Genericity	of	Template	Implementations

As	is	briefly	explained	in	Part	I	of	the	book,	function	templates	can	be	seen	as	a	natural	solution	to	the
problem	of	supporting	parametric	polymorphism	in	 the	presence	of	native	unboxed	data.	However,
function	templates	can	do	much	more	than	just	supporting	parametric	polymorphism.	Let	 myprint 	be
a	function	template	of	the	following	interface:

fun{a:t@ype}	myprint	(x:	a):	void

Given	 a	 value,	 myprint 	 is	 supposed	 to	 print	 out	 some	 kind	 of	 representation	 for	 this	 value.	 For
example,	we	can	implement	 myprint 	as	follows:

implement{a}	myprint	(x)	=	print_string	"?"

This	implementation	of	 myprint 	is	often	referred	to	as	a	(fully)	generic	template	implementation	due
to	no	restriction	being	imposed	on	the	template	parameter.	Following	is	another	way	to	code	the	same
implementation:

implement(a)	myprint<a>	(x)	=	print_string	"?"

Clearly,	 the	 above	 generic	 implementation	 of	 myprint 	 is	 unsatisfactory	 as	 it	 outputs	 no	 specific
information	on	a	given	value.	We	may	want	to	implement	 myprint 	as	follows	for	only	values	of	the
type	 int :

implement	myprint<int>	(x)	=	print_int	(x)

where	 print_int 	 is	 called	 to	 print	 out	 a	 given	 integer.	 This	 implementation	 of	 myprint 	 is	 often
referred	 to	 as	 a	 specific	 template	 implementation	 due	 to	 the	 template	 parameter	 being	 bound	 to	 a
specific	type	(that	is,	 int 	in	this	case).	The	following	code	implements	 myprint 	for	list-values	(that	is,
values	of	type	 List(T) 	for	some	type	T):

implement(a)

myprint<List(a)>	(xs)	=

case+	xs	of

|	list_nil	()	=>	()

|	list_cons	(x,	xs)	=>

				(myprint<a>	(x);	myprint<List(a)>	(xs))

This	implementation	of	 myprint 	is	often	referred	to	as	a	partially	generic	template	implementation.	In

order	for	an	instance	of	 myprint 	 to	use	this	implementation,	the	template	parameter	for	the	instance
must	be	of	the	form	 List(T) 	for	some	type	T.	As	an	example,	the	following	code	calls	an	instance	of
myprint 	to	print	out	a	list	of	two	integer	lists:

(*

**	The	output	is	"0123401234"

*)

val	ys	=	$list{int}(0,1,2,3,4)

val	yss	=	$list{List(int)}(ys,	ys)

val	((*void*))	=	myprint<List(List(int))>	(yss)

val	((*void*))	=	print_newline((*void*))

Implementations	 of	 a	 function	 template	 can	 be	 ordered	 according	 to	 an	 obvious	 partial	 ordering
referred	to	as	genericity	ordering:	The	genericity	of	one	implementation	is	less	than	or	equal	to	that
of	another	one	if	the	former	implementation	is	an	instance	of	the	latter	one.	Please	note	that	the	first-
fit	 (instead	 of	 best-fit)	 strategy	 is	 employed	 to	 locate	 the	 template	 implementation	 needed	 for
compiling	 a	 given	 template	 instance.	More	 specifically,	 locating	 the	 template	 implementation	 for	 a
particular	 template	 instance	 follows	 the	standard	principle	of	 lexical	 scoping	 to	search	 for	 the	 first
one	that	is	available	for	use.

In	 practice,	 there	 is	 quite	 a	 bit	 of	 subtlety	 in	 locating	 a	 template	 implementation	 for	 a	 template
instance.	Let	 myprint2 	be	a	function	template	of	the	following	interface:

fun{a:t@ype}	myprint2	(x:	a):	int

Following	is	a	partially	generic	implementation	of	 myprint2 :

//

implement(a)

myprint2<List(a)>	(xs)	=

case+	xs	of

|	list_nil	()	=>	()

|	list_cons	(x,	xs)	=>

				(myprint<a>	(x);	1	+	myprint2	(xs))

//

This	template	implementation	actually	behaves	very	differently	from	what	one	might	have	expected.
Note	that	the	template	parameter	of	the	called	instance	of	 myprint2 	in	the	body	of	the	implementation
is	synthesized	to	be	a	type	of	 the	form	 list(a,	N) 	 for	some	static	 term	N	(of	 the	sort	 int).	As	 this
form	can	never	match	 List(T) 	for	any	type	T,	the	called	instance	of	the	template	 myprint2 	cannot	be

compiled	according	to	the	given	template	implementation	of	 myprint2 .	This	issue	can	be	readily	fixed
by	passing	explicity	the	type	 List(a) 	(as	a	template	parameter)	to	the	called	instance	of	 myprint2 :

//

implement(a)

myprint2<List(a)>	(xs)	=

case+	xs	of

|	list_nil	()	=>	()

|	list_cons	(x,	xs)	=>

				(myprint<a>	(x);	1	+	myprint2<List(a)>	(xs))

//

The	instance	 myprint2<List(a)> 	in	this	example	is	often	referred	to	as	a	recursive	instance.	In	general,
it	 is	 a	 good	programming	practice	 to	avoid	 using	 recursive	 instances.	 For	 example,	 the	 following
equivalent	implementation	of	 myprint2 	makes	no	use	of	recursive	instances:

//

implement(a)

myprint2<List(a)>

		(xs)	=	let

//

fun

aux

(xs:	List(a)):	int	=

//

case+	xs	of

|	list_nil	()	=>	0

|	list_cons	(x,	xs)	=>	(myprint<a>(x);	1	+	aux(xs))

//

in

		aux	(xs)

end	//	end	of	[myprint2<List(a)>]

//

Please	find	on-line	the	file	myprint.dats	containing	the	entirety	of	the	code	presented	in	this	section
plus	some	testing	code.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_FNTMPINT/myprint.dats

Example:	Generic	Operations	on	Numbers

There	 are	 many	 types	 of	 numbers	 in	 ATS.	With	 function	 templates,	 we	 can	 greatly	 enhance	 code
sharing	 in	 numerical	 computation.	 For	 example,	 we	 can	 give	 a	 generic	 implementation	 of	matrix
multiplication	of	the	following	interface:

fun

{a:t@ype}

matrix_mul

		{p,q,r:int}

(

		p:	int(p)

,	q:	int(q)

,	r:	int(r)

,	A:	&matrix(a,	p,	q)

,	B:	&matrix(a,	q,	r)

,	C:	&matrix(a?,	p,	r)	>>	matrix(a,	p,	r)

)	:	void	//	end	of	[matrix_mul]

and	 then	 use	 it	 to	 immediately	 obtain	 implementations	 of	 matrix	 multiplication	 for	 matrices	 of
integers,	matrices	of	floating	point	numbers,	matrices	of	floating	point	complex	numbers,	etc.	This
approach	is	clearly	far	superior	to	relying	on	error-prone	macros	in	C.

Let	us	 take	 a	 look	at	 a	 concrete	 example	 involving	generic	operations	on	numbers.	The	 following
code	gives	a	standard	implementation	of	the	factorial	function:

//

extern

fun	fact(n:	int):	int

//

implement

fact(n)	=

		if	n	>	0	then	n	*	fact(n-1)	else	1

//	end	of	[fact]

//

When	applied	to	100,	 fact 	is	likely	to	return	0.	This	can	be	easily	understood	as	the	true	value	of	the
factorial	of	100	 is	a	multiple	of	232	and	 the	multiplication	operation	on	 integers	of	 the	 type	 int 	 is
probably	modulo	232.	Suppose	that	we	want	to	replace	this	multiplication	operation	with	the	one	on
floating	 point	 numbers	 of	 double	 precision.	This	 can	 be	 done	 by	 implementing	 a	 slight	 variant	 of
fact 	as	follows

//

extern

fun	factd(n:	int):	double

implement

factd(n)	=

		if	n	>	0	then	n	*	factd(n-1)	else	1.0

//	end	of	[factd]

//

When	applied	to	100,	 factd 	should	return	a	large	floating	point	number.	Obviously,	there	is	a	great
deal	of	code	duplication	between	 the	 implementations	of	 fact 	and	 factd .	We	can	 readily	eliminate
this	duplication	by	introducing	a	generic	implementation	of	the	factorial	function	as	follows:

//

extern

fun{a:t@ype}	gfact(n:	int):	a

//

implement

{a}(*tmp*)

gfact(n)	=	(

//

if	n	>	0

then	gmul_int_val<a>(n,	gfact<a>(n-1))

else	gnumber_int<a>(1)

//

)	(*	end	of	[gfact]	*)

//

With	a	bit	of	help	from	the	support	for	overloading	in	ATS,	we	can	rewrite	 gfact 	as	follows:

implement

{a}(*tmp*)

gfact(n)	=	let

//

overload	*	with	gmul_int_val

//

in

//

if	n	>	0

then	n	*	gfact<a>(n-1)	else	gnumber_int<a>(1)

//

end	(*	end	of	[gfact]	*)

We	can	now	implement	 fact 	and	 factd 	as	follows:

//

implement	fact(n)	=	gfact<int>(n)

implement	factd(n)	=	gfact<double>(n)

//

There	 is	 support	 in	 ATS	 based	 on	 the	 GNU	 multiple	 precision	 arithmetic	 library	 (GMPLIB)	 for
integers	of	unlimited	precision.	The	following	code	presents	a	way	to	compute	the	true	value	of	the
factorial	of	100:

//

staload	_(*T*)	=

"{$LIBATSHWXI}/intinf/DATS/intinf_t.dats"

staload	_(*VT*)	=

"{$LIBATSHWXI}/intinf/DATS/intinf_vt.dats"

//

staload	GINTINF	=

"{$LIBATSHWXI}/intinf/DATS/gintinf_t.dats"

//

typedef	intinf	=	$GINTINF.intinf

overload	print	with	$GINTINF.print_intinf

//

val	()	=

println!	("gfact<intinf>(100)	=	",	gfact<intinf>(100))

//

I	only	list	some	leading	digits	of	the	result:

gfact<intinf>(100)	=	933262154439441526816992388562667[...omitted...]

Please	find	on-line	the	file	gnumber.dats	containing	the	entirety	of	the	code	presented	in	this	section
plus	some	testing	code.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_FNTMPINT/gnumber.dats

Templates	as	a	Special	Form	of	Functors

Many	 uses	 of	 higher-order	 functions	 can	 be	 readily	 replaced	 with	 function	 templates	 in	 ATS.	 In
particular,	higher-order	functions	are	often	implemented	in	ATS	based	on	the	corresponding	function
templates.	 Let	 us	 start	 with	 a	 concrete	 example.	 Following	 is	 a	 standard	 implementation	 of	 list
mapping	as	a	higher-order	function	(template):

//

extern

fun

{a:t@ype}

{b:t@ype}

list_map_fun{n:nat}

		(xs:	list(a,	n),	f:	a	->	b):	list_vt(b,	n)

//

implement

{a}{b}

list_map_fun	(xs,	f)	=	let

//

fun

aux{n:nat}

		(xs:	list(a,	n)):	list_vt(b,	n)	=

(

case+	xs	of

|	list_nil	()	=>	list_vt_nil	()

|	list_cons	(x,	xs)	=>	list_vt_cons	(f(x),	aux(xs))

)

//

in

		aux(xs)

end	//	end	of	[list_map_fun]

//

Given	a	list	of	cerntain	length	and	a	function	(which	is	envless),	 list_map_fun 	returns	a	linear	list	of
the	 same	 length.	Unfortunately,	 list_map_fun 	 cannot	 be	 called	 on	 a	 list	 and	 a	 closure-function.	We
certainly	can	implement	a	variant	of	 list_map_fun 	of	the	following	interface	by	essentially	duplicating
the	implementation	of	 list_map_fun :

//

extern

fun

{a:t@ype}

{b:t@ype}

list_map_cloref{n:nat}

		(xs:	list(a,	n),	f:	a	-<cloref1>	b):	list_vt(b,	n)

//

While	 list_map_cloref 	 can	 be	 called	 on	 a	 list	 and	 a	 closure-function,	 the	 closure-function	 that	 is
formed	 at	 run-time	 to	 be	 passed	 to	 a	 call	 to	 list_map_cloref 	 most	 likely	 becomes	 garbage
immediately	 after	 the	 call	 returns.	 Without	 garbage	 collection	 (GC),	 the	 memory	 for	 storing	 the
closure	is	leaked.	We	surely	have	many	good	reasons	for	avoiding	using	a	higher-order	function	like
list_map_cloref 	when	doing	embedded	programming	in	ATS.

A	proper	way	to	implement	list	mapping	(as	I	see	it)	is	given	as	follows:

//

extern

fun

{a:t@ype}

{b:t@ype}

list_map{n:nat}

		(xs:	list(a,	n)):	list_vt(b,	n)

//

extern

fun

{a:t@ype}{b:t@ype}	list_map$fopr(x:	a):	b

//

implement

{a}{b}

list_map	(xs)	=	let

//

fun

aux{n:nat}

		(xs:	list(a,	n)):	list_vt(b,	n)	=

(

case+	xs	of

|	list_nil	()	=>	list_vt_nil	()

|	list_cons	(x,	xs)	=>	list_vt_cons	(list_map$fopr<a>(x),	aux(xs))

)	(*	end	of	[aux]	*)

//

in

		aux(xs)

end	//	end	of	[list_map]

//

The	 function	 template	 list_map 	 is	 given	 in	 a	 style	 that	 is	 often	 referred	 to	 as	 being	 functorial:
list_map 	can	be	thought	of	as	a	functor	in	Standard	ML	that	applies	to	a	module	consisting	of	a	single

function	 list_map$fopr .	 In	 SML,	 each	 argument	 of	 a	 functor,	which	 itself	 is	 a	module,	 needs	 to	 be
constructed	and	then	passed	to	the	functor	explcitly.	In	ATS,	the	template	implementation	needed	for
compiling	 a	 particular	 template	 instance	 is	 located	 through	 a	 search	 procedure	 (that	 follows	 the
standard	principle	of	lexical	scoping).

With	 list_map ,	 we	 can	 implement	 both	 list_map_fun 	 and	 list_map_cloref 	 as	 follows	 in	 a
straightforward	manner:

implement

{a}{b}

list_map_fun(xs,	f)	=	let

//

implement	list_map$fopr<a>	(x)	=	f(x)

//

in

		list_map<a>	(xs)

end	//	end	of	[list_map_fun]

(*	******	******	*)

implement

{a}{b}

list_map_cloref(xs,	f)	=	let

//

implement	list_map$fopr<a>	(x)	=	f(x)

//

in

		list_map<a>	(xs)

end	//	end	of	[list_map_cloref]

For	 those	 who	 are	 familiar	 with	 functors	 in	 SML,	 the	 implementation	 of	 list_map_fun 	 and
list_map_cloref 	should	clearly	remind	them	of	functor	application.

Please	find	on-line	the	file	list_map.dats	containing	the	entirety	of	the	code	presented	in	this	section
plus	some	testing	code.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_FNTMPINT/list_map.dats

Example:	Templates	for	Loop	Construction

Beginners	 in	 functional	 programming	 (FP)	 who	 have	 already	 acquired	 some	 knowledge	 of
imperative	 programming	 often	 ask	 about	 ways	 to	 construct	 for-loops	 and	 while-loops	 in	 FP.	 A
commonly	given	answer	is	that	loop	constructs	are	unnecessary	in	FP	as	they	can	be	readily	replaced
with	higher-order	functions.	Let	us	first	see	some	thorny	issues	with	this	answer.

The	 following	code	 in	C	 implements	a	 function	 that	 returns	 the	 sum	of	 the	 first	n	natural	numbers
when	applied	to	a	natural	number	n:

int

tally	(int	n)	{

		int	i,	res;

		for	(i	=	0,	res	=	0;	i	<	n;	i	+=	1)	res	+=	i;

		return	res;

}

This	function	 tally 	can	be	given	the	following	equivalent	implementation	in	ATS:

fun

tally

(

		n:	int

)	:	int	=	loop	(0,	0)	where

{

		fun	loop	(i:	int,	res:	int):	int	=

				if	i	<	n	then	loop	(i	+	1,	res	+	i)	else	res

}

where	the	tail-recursive	function	 loop 	is	just	a	translation	of	the	for-loop	in	C.

When	 someone	 claims	 that	 loop	 constructs	 can	be	 replaced	with	higher-order	 functions,	 he	or	 she
probably	means	to	construct	loops	with	a	function	like	the	following	one:

fun

for_loop

(

		count:	int,	limit:	int,	fwork:	(int)	-<cloref1>	void

)	:	void	=	(

if	count	<	limit

		then	(fwork(count);	for_loop(count+1,	limit,	fwork))	else	()

//	end	of	[if]

)	(*	end	of	[for_loop]	*)

For	example,	the	following	function	 tally2 	is	directly	based	on	 for_loop :

fun

tally2

(

		n:	int

)	:	int	=	let

		val	res	=	ref<int>	(0)

in

		for_loop	(0,	n,	lam	(i)	=>	!res	:=	!res	+	i);	!res

end	//	end	of	[tally2]

While	 both	 tally 	 and	 tally2 	 return	 the	 same	 result	when	 applied	 to	 a	 given	 natural	 number,	 they
behave	very	differently	at	run-time.	In	particular,	each	call	to	 tally2 	creates	a	(persistent)	reference
on	 heap	 for	 temporary	 use;	 the	 reference	 becomes	 garbage	 immediately	 after	 the	 call	 returns.
Compared	to	 tally ,	 tally2 	is	inefficient	both	time-wise	and	memory-wise.

To	eliminate	the	need	for	reference	creation	in	 tally2 ,	we	turn	 for_loop 	into	the	following	function
template	 for_loop2 :

fun{

env:t@ype

}	for_loop2

(

		count:	int,	limit:	int

,	env:	&env	>>	_,	fwork:	(int,	&env	>>	_)	-<cloref1>	void

)	:	void	=	(

if

count	<	limit

then	(

		fwork(count,	env);	for_loop2<env>	(count+1,	limit,	env,	fwork)

)	else	()

//	end	of	[if]

)	(*	end	of	[for_loop2]	*)

We	can	further	turn	 tally2 	into	the	following	 tally3 	based	on	 for_loop2 :

fun

tally3

(

		n:	int

)	:	int	=	let

		var	res:	int	=	0

in

		for_loop2<int>	(0,	n,	res,	lam	(i,	res)	=>	res	:=	res	+	i);	res

end	//	end	of	[tally3]

While	 tally3 	 improves	 upon	 tally2 ,	 it	 is	 still	 a	 bit	 unsatisfactory.	 Clearly,	 the	 closure	 function
formed	 before	 tally3 	 calls	 for_loop2 	 becomes	 garbage	 immediately	 after	 the	 call	 returns.	 It	 is
plausible	 to	 expect	 that	 an	 optimizing	C	 compiler	 (e.g.,	 gcc	 and	 clang)	 can	 eliminate	 the	 need	 for
actual	closure	formation	when	it	compiles	on	the	C	code	generated	from	ATS	source,	but	there	is	no
guarantee.	 In	order	 to	have	 such	 a	guarantee,	we	 can	 evolve	 for_loop2 	 into	 the	 following	 function
template	 for_loop3:

fun{

env:t@ype

}	for_loop3

(

		count:	int,	limit:	int,	env:	&env	>>	_

)	:	void	=	(

if

count	<	limit

then	(

		for_loop3$fwork<env>(count,	env);	for_loop3<env>(count+1,	limit,	env)

)	else	()

//	end	of	[if]

)	(*	end	of	[for_loop3]	*)

where	 for_loop3$fwork 	is	given	the	interface	below:

fun{

env:t@ype

}	for_loop3$fwork(count:	int,	env:	&env	>>	_):	void

Finally,	we	can	turn	 tally3 	into	 tally4 	as	follows:

fun

tally4

(

		n:	int

)	:	int	=	let

//

var	res:	int	=	0

//

implement

for_loop3$fwork<int>	(i,	res)	=	res	:=	res	+	i

//

in

		for_loop3<int>	(0,	n,	res);	res

end	//	end	of	[tally4]

By	inspecting	the	C	code	generated	by	atsopt	from	compiling	 tally4 ,	we	can	see	that	the	C	code	is
essentially	equivalent	to	the	implementation	of	 tally 	in	C	(given	at	the	beginning	of	this	section).

By	 now,	 the	 reader	 probably	 agrees	 with	 me	 if	 I	 say	 the	 statement	 should	 at	 least	 be	 considered
grossly	 inaccurate	 that	 claims	 loop	 constructs	 in	 FP	 can	 be	 readily	 replaced	 with	 higher-order
functions.	Please	find	on-line	 the	file	 loopcons.dats	 containing	 the	entirety	of	 the	code	presented	 in
this	section	plus	some	testing	code.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_FNTMPINT/loopcons.dats

Template-Based	Support	for	Late-Binding

When	asked	about	the	meaning	of	object-oriented	programming	(OOP),	Alan	Kay	once	said	that	OOP
to	him	meant	only	messaging,	local	retention	and	protection	and	hiding	of	state-process,	and	extreme
late-binding	of	all	things.

In	 ATS,	 function	 templates	 can	 provide	 a	 highly	 flexible	 approach	 to	 supporting	 late-binding	 (of
function	 calls).	 Let	 us	 first	 take	 a	 look	 at	 a	 simple	 example	 to	 see	 why	 late-binding	 can	 be	 so
desirable.	The	following	code	declares	a	datatype	 intfloat 	such	that	each	value	of	this	declared	type
represents	either	an	integer	or	a	floating	point	number	(of	double	precision):

//

datatype

intfloat	=

		INT	of	int	|	FLOAT	of	double

//

In	order	to	print	values	of	the	type	 intfloat ,	we	can	implement	 print_intfloat 	as	follows:

//

fun

print_intfloat

		(x:	intfloat):	void	=

(

case+	x	of

|	INT(int)	=>	print_int(int)

|	FLOAT(float)	=>	print_double(float)

)

//

where	 print_int 	and	 print_double 	are	monomorphic	functions	for	printing	an	integer	and	a	floating
point	 number	 (of	 double	 precision),	 respectively.	There	 are	 certainly	many	 different	ways	 to	 print
integers	and	floating	point	numbers,	but	 print_intfloat 	only	uses	a	particular	one	for	 integers	 (via
print_int)	 and	 a	 particular	 one	 for	 floating	 point	 numbers	 (via	 print_double).	 One	 possibility	 of
avoiding	 this	 form	 of	 extreme	 inflexibility	 is	 to	 define	 a	 higher-order	 function	 fprint_intfloat 	 as
follows:

//

fun

fprint_intfloat

(

		x:	intfloat

,	print_int:	int	->	void

,	print_double:	double	->	void

)	:	void	=

(

case+	x	of

|	INT(int)	=>	print_int(int)

|	FLOAT(float)	=>	print_double(float)

)

//

With	 fprint_intfloat ,	one	can	decide	to	choose	implementations	for	 print_int 	and	 print_double 	at	a
later	 stage.	 In	 this	 regard,	 I	 say	 that	 higher-order	 functions	 can	 support	 a	 form	 of	 late-binding.
However,	using	higher-order	functions	in	such	a	manner	is	not	without	serious	problems.	Basically,
any	function	that	calls	 print_int 	either	directly	or	 indirectly	needs	 to	be	 turned	into	a	higher-order
function,	and	the	same	applies	to	functions	calling	 print_double 	as	well.	This	style	of	programming
with	extensive	use	of	higher-order	functions	can	soon	become	extremely	unwieldy	when	the	number
of	functions	grows	large	that	need	to	be	treated	like	 print_int 	and	 print_double .

Instead	of	using	higher-order	functions,	we	can	rely	on	template	functions	to	support	late-binding	(of
function	calls).	For	example,	the	following	code	implements	a	template	function	 tprint_intfloat 	 for
printing	values	of	the	type	 intfloat :

//

extern

fun{}

tprint_int(int):	void

extern

fun{}

tprint_double(double):	void

extern

fun{}

tprint_intfloat(intfloat):	void

//

(*	******	******	*)

//

implement

tprint_int<>	(x)	=	print_int(x)

implement

tprint_double<>	(x)	=	print_double(x)

//

(*	******	******	*)

//

implement

tprint_intfloat<>	(x)	=

(

case+	x	of

|	INT(int)	=>	tprint_int<>	(int)

|	FLOAT(float)	=>	tprint_double<>	(float)

)

//

Please	note	that	the	default	implementations	for	 tprint_int 	and	 tprint_double 	are	based	on	 print_int
and	 print_double ,	respectively.	As	can	be	expected,	the	following	code	outputs	two	lines:

//

val	()	=	(

		tprint_intfloat<>	(INT(0));	print_newline()

)	(*	end	of	[val]	*)

//

val	()	=	(

		tprint_intfloat<>	(FLOAT(1.0));	print_newline()

)	(*	end	of	[val]	*)

//

where	the	first	line	consists	of	the	string	"0"	and	the	second	one	the	string	"1.000000".	The	following
code	also	outputs	two	lines:

local

//

implement

tprint_int<>	(x)	=	print!	("INT(",	x,	")")

implement

tprint_double<>	(x)	=	print!	("FLOAT(",	x,	")")

//

in	(*	in-of-local	*)

//

val	()	=	(

		tprint_intfloat<>	(INT(0));	print_newline()

)	(*	end	of	[val]	*)

//

val	()	=	(

		tprint_intfloat<>	(FLOAT(1.0));	print_newline()

)	(*	end	of	[val]	*)

//

end	//	end	of	[local]

where	the	first	line	consists	of	the	string	"INT(0)"	and	the	second	one	the	string	"FLOAT(1.000000)").

In	 the	 latter	 case,	 the	 calls	 to	 template	 instances	 tprint_int<> 	 and	 tprint_double<> 	 are	 compiled
according	 to	 the	 implementations	 for	 tprint_int 	 and	 tprint_double 	 given	 between	 the	 keywords
local 	and	 in .

Please	find	on-line	the	file	 intfloat.dats	containing	 the	entirety	of	 the	code	presented	 in	 this	section
plus	some	testing	code.

Done.

https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/INT2PROGINATS/CODE/CHAP_FNTMPINT/intfloat.dats

	Chapter 1. Preparation for Starting It is likely that you want to write programs in the programming language you are learning. You may also want to try some of the examples included in this book and see what really happens. So I will first show you how to write in ATS a single-file program, that is, a program contained in a single file, and compile it and then execute it. A Running ProgramThe following example is a program in ATS that prints out (onto the console) the string "Hello, world!" plus a newline before it terminates: val _ = print ("Hello, world!\n") implement main0 () = () // a dummy for [main] The keyword val initiates a binding between the variable _ (underscore) and the function call print ("Hello, world!\n"). However, this binding is never used after it is introduced; its sole purpose is for the call to the print function to get evaluated. The function main0 is a slight variant of another function named main, which is of certain special meaning in ATS. For a programmer w
	Chapter 1. Preparation for Starting
	Chapter 2. Elements of ProgrammingThe core of ATS is a call-by-value functional programming language. I will explain the meaning of call-by-value in a moment. As for functional programming, there is really no precise definition. The most important aspect of functional programming that I want to explore is the notion of binding, which relates names to expressions.Expressions and Values ATS is both syntax-rich and feature-rich, and its grammar is probably more complex than most existing programming languages. In ATS, there are a large variety of forms of expressions, which I will introduce gradually. Let us first start with some integer arithmetic expressions (IAEs): 1, ~2, 1+2, 1+2*3-4, (1+2)/(3-4), etc. Note that the negative sign is represented by the tilde symbol (~) in ATS. There is also support for floating point numbers, and some floating point constants are given here: 1.0, ~2.0, 3., 0.12345, 2.71828, 31416E-4, etc. Note that 3. and 31416E-4 are the same as 3.0 and 3.1416, respec
	Chapter 2. Elements of Programming
	Chapter 3. Functions Functions play a foundational role in programming. While it may be theoretically possible to program without functions (but with loops), such a programming style is of little practical value. ATS does provide some language constructs for implementing for-loops and while-loops directly. I, however, strongly recommend that the programmer implement loops as recursive functions or more precisely, as tail-recursive functions. This is a programming style that matches well with more advanced programming features in ATS, which will be presented in this book later. The code employed for illustration in this chapter plus some additional code for testing is available on-line. Functions as a Simple Form of AbstractionGiven an expression exp of the type double, we can multiply exp by itself to compute its square. If exp is a complex expression, we may introduce a binding between a name and exp so that exp is only evaluated once. This idea is shown in the following example: let
	Chapter 3. Functions
	Chapter 4. DatatypesThe feature of datatypes in ATS in largely taken from ML. A datatype is like a tagged union type. For each datatype, there are some constructors associated with it, and these constructors are needed for constructing values of the datatype. As an example, the following syntax declares a datatype named intopt: datatype intopt = | intopt_none of () | intopt_some of (int) // end of [intopt] There are two constructors associated with intopt: intopt_none, which is nullary, and intopt_some, which is unary. For instance, intopt_none() and intopt_some(1) are two values of the type intopt. In order for accessing components in such values, a mechanism often referred to as pattern-matching is provided in ATS. I will demonstrate through examples that datatypes plus pattern matching can offer not only great convenience in programming but also clarity in code. The code employed for illustration in this chapter plus some additional code for testing is available on-line. PatternsPat
	Chapter 4. Datatypes
	Chapter 5. Parametric Polymorphism Code sharing is of paramount importance in programming. In a typed programming language, we often encounter a situation where the same functionality is needed for values of different types. For instance, we may need to compute the length of a list while the elements in the list can be characters, integers, strings, etc. Evidently, we want to avoid implementing a list-length function for each element type as it would probably be the worst form of code duplication. We want to implement one single function that can be applied to any list to compute the length of the list. This list-length function parameterizes over the element type of a given list, and it behaves uniformly regardless what the element type is. This is a form of code sharing that is often referred to as parametric polymorphism, which should be distinguished from other forms of polymorphism such as inheritance polymorphism in object-oriented programming. The code employed for illustration
	Chapter 5. Parametric Polymorphism
	Chapter 6. Effectful Programming Features Effectful programming features are those that can generate effects at run-time. But what is really an effect? The answer to this question is rather complex as it depends on the model of evaluation. I will gradually introduce various kinds of effects in this book. In sequential programming, that is, constructing programs to be evaluated sequentially (in contrast to concurrently), an expression is effectless if there exists a value such that the expression and the value cannot be distinguished as far as evaluation is concerned. For instance, the expression 1+2 is effectless as it cannot be distinguished from the value 3. An effectless expression is also said to be pure. On the other hand, an effectful expression is one that can be distinguished from any given values. For instance, the expression print("Hello") is effectful as its evaluation results in an observable behavior that distinguishes the expression from any values. In this case, print("H
	Chapter 6. Effectful Programming Features
	Chapter 7. Modularity Generally speaking, modularity in programming means to organize programs in a modular fashion so that they each can be constructed in a relatively isolated manner and then be combined to function coherently. I will introduce in this section some features in ATS that are largely designed to facilitate program organization. The code employed for illustration in this chapter plus some additional code for testing is available on-line. Types as a Form of Specification The interface for a function or value specifies a type that any implementation of the function or value should possess. For instance, the following code defines a function fact for computing the factorial of a given integer: fun fact (x: int): int = if x > 0 then x * fact (x-1) else 1 It is also possible to first declare an interface for fact as follows: extern fun fact (x: int): int where extern is a keyword in ATS that initiates the declaration of an interface. Alternative ways to declare an interface f
	Chapter 7. Modularity
	Chapter 8. Interaction with C ATS and C share precisely the same native/flat/unboxed data representation. As a consequence, there is no need for wrapping/unwrapping or boxing/unboxing when calling from C a function implemented in ATS or vice versa, and there is also no run-time overhead for doing so. To a large extent, ATS can be considered a front-end to C that is equipped with a highly expressive type system (for specifying program invariants) and a highly adaptable template system (for facilitating code reuse). In particular, ATS can often be effectively employed to turn a large task into subtasks of coherent interfaces, which can be implemented in ATS, C or some other langauges and then assembled together to form a solution to the orginal task. As can be expected, C code that appears directly in ATS does not go through the kind of rigorous typechecking like ATS code should. So it is recommended that the programmer be extra cautious when making direct use of C code inside ATS code.
	Chapter 8. Interaction with C
	Chapter 9. Introduction to Dependent Types The types we have encountered so far in this book are often not adequately precise in capturing programming invariants. For instance, if we assign the type int to both of integers 0 and 1, then we simply cannot distinguish 0 from 1 at the level of types. This means that 0 and 1 are interchangeable as far as typechecking is concerned. In other words, we cannot expect a program error to be caught during typechecking if the error is caused by 0 being mistyped as 1. This form of imprecision in types can become a crippling limitation if we ever want to build a type-based specification language that is reasonably expressive for practical use. Please find on-line the code employed for illustration in this chapter plus some additional code for testing. Enhanced Expressiveness for Specification The primary purpose of introducing dependent types into the type system of ATS is to greatly enhance the expressiveness of types so that they can be employed to
	Chapter 9. Introduction to Dependent Types
	Chapter 10. Datatype Refinement The datatype mechanism in ATS is adopted from ML directly, and it is really a signatory feature in functional programming. However, the datatypes we have seen so far are not very precise when employed to classify values. For instance, given a type T, the type list0(T) is for values representing both empty and non-empty lists consisting of elements of the type T. Therefore, empty and non-empty lists cannot be distinguished at the level of types. This limitation severely diminishes the effectiveness of datatypes of ML-style in capturing program invariants. In ATS, datatypes of ML-style can be refined into dependent datatypes of DML-style, where DML refers to the programming language Dependent ML, the immediate precursor of ATS. With such refinement, datatypes can classify values with greatly enhanced precision. The code employed for illustration in this chapter plus some additional code for testing is available on-line. Dependent Datatypes The syntax for d
	Chapter 10. Datatype Refinement
	Chapter 11. Theorem-Proving in ATS/LF Within the ATS programming language system, there is a component named ATS/LF for supporting (interactive) therorem-proving. In ATS/LF, theorem-proving is done by constructing proofs as total functional programs. It will soon become clear that this style of theorem-proving can be combined cohesively with functional programming to yield a programming paradigm that is considered the signature of ATS: programming with theorem-proving. Moreover, ATS/LF can be employed to encode various deduction systems and their meta-properties. Please find on-line the code employed for illustration in this chapter plus some additional code for testing. Encoding Relations as Dataprops In the statics of ATS, there is a built-in sort prop for static terms that represent types for proofs. A static term of the sort prop can also be referred to as a type or more accurately, a prop-type or just a prop. A dataprop can be declared in a manner that is mostly similar to the dec
	Chapter 11. Theorem-Proving in ATS/LF
	Chapter 12. Programming with Theorem-Proving Programming with Theorem-Proving (PwTP) is a rich and broad programming paradigm that allows cohesive construction of programs and proofs in a syntactically intwined manner. The support for PwTP in ATS is a signatory feature of ATS, and the novelty of ATS largely stems from it. For people who are familiar with the so-called Curry-Howard isomorphism, I emphasize that PwTP as is supported in ATS makes little, if any, essential use of this isomorphism (between proofs and programs): The dynamics of ATS in which programs are written is certainly not pure and the proofs encoded in ATS/LF are not required to be constructive, either. However, that proof construction in ATS can be done in a style of (functional) programming is fundamentally important in terms of syntax design for ATS, for the need to combine programs with proofs would otherwise be greatly more challenging. In this chapter, I will present some simple but convincing examples to illustr
	Chapter 12. Programming with Theorem-Proving
	Chapter 13. Introduction to Views and Viewtypes Probably the single greatest motivation behind the development of ATS is the desire to make ATS a programming language that can be employed effectively to construct safe and reliable programs running in the kernels of operating systems. Instead of following seemingly natural approaches that often focus on carving out a "safe" subset of C and/or put wrappers around "unsafe" programming features in C, ATS relies on the paradigm of programming with theorem-proving to prevent resources such as memory from being misused or mismanaged, advocating an approach to safety that is both general and flexible. For example, a well-typed program constructed in ATS cannot cause buffer overrun at run-time even though pointer arithmetic is fully supported in ATS. More specifically, if a pointer is to be dereferenced, ATS requires that a proof be given attesting to the safety of the dereferencing operation. Proofs of this kind are constructed to demonstrate
	Chapter 13. Introduction to Views and Viewtypes
	Chapter 14. Dataviews as Linear Dataprops The at-views of the form T@L for types T and addresses L are building blocks for constructing other forms of views. One mechanism for putting together such building blocks is by declaring dataviews, which is mostly identical to declaring dataprops. I now present in this chapter some commonly encountered dataviews and their uses. Please find on-line the code presented for illustration in this chapter. Optional Views The dataview option_v is declared as follows: dataview option_v (v:view+, bool) = | Some_v (v, true) of (v) | None_v (v, false) of () This declaration indicates that the dataview option_v is covariant in its first argument and there are two proof constructors associated with it: Some_v and None_v. Given a view V, option_v(V, b) is often called an optional view, where b is a boolean. Clearly, a proof of the view option_v(V, true) contains a proof of the view V while a proof the view option_v(V, false) contains nothing. As an example,
	Chapter 14. Dataviews as Linear Dataprops
	Chapter 15. Dataviewtypes as Linear Datatypes A dataviewtype can be thought of as a linear version of datatype. To a large extent, it is a combination of a datatype and a dataview. This programming feature is primarily introduced into ATS for the purpose of providing in the setting of manual memory management the kind of convenience brought by pattern matching. In a situation where GC must be reduced or even completely eliminated, dataviewtypes can often be chosen as a replacement for datatypes. I now present in this chapter some commonly encountered dataviewtypes and their uses. Linear Optional Values When an optional value is created, the value is most likely to be used immediately and then discarded. If such a value is assigned a linear type, then the memory allocated for storing it can be efficiently reclaimed. The dataviewtype option_vt for linear optional values is declared as follows: datavtype option_vt (a:t@ype+, bool) = | Some_vt (a, true) of a | None_vt (a, false) of () // e
	Chapter 15. Dataviewtypes as Linear Datatypes
	Chapter 16. Abstract Views and Viewtypes I have so far given a presentation of views that solely focuses on at-views and the views built on top of at-views. This is largely due to at-views being the form of most widely used views in practice and also being the first form of views supported in ATS. However, other forms of views can be readily introduced into ATS abstractly. Even in a case where a view can be defined based on at-views (or other forms of views), one may still want to introduce it as an abstract view (accompanied with certain proof functions for performing view-changes). Often what the programmer really needs is to figure out conceptually whether abstractly defined views and proof functions for manipulating them actually make sense. This is a bit like arguing whether a function is computable: There is rarely a need, if at all, to actually encode the function as a Turing-machine to prove its being computable. IMHO, learning proper use of abstract views and abstract viewtype
	Chapter 16. Abstract Views and Viewtypes
	Chapter 17. From Genericity to Late-Binding The support for function templates in ATS is deeply ingrained in the design and implementation of ATS. Primarily, function templates are meant to provide a general approach to code reuse in ATS that is highly flexible (in terms of applicability) while incurring minimal run-time overhead if any. Both ATSPRE (that is, ATSLIB/prelude) and ATSLIB/libats are nearly entirely template-based, and the templates in these libraries are for use by atsopt to generate C code that implements template instances in the ATS source being compiled. The library files of ATS for linking (libatslib.a and libatslib.so) are minimal, and they are not even necessary for compiling ATS source into executable binaries. The code employed for illustration in this chapter plus some additional code for testing is available on-line. Genericity of Template Implementations As is briefly explained in Part I of the book, function templates can be seen as a natural solution to the
	Chapter 17. From Genericity to Late-Binding

